{"title":"Synthesis of the pentasaccharide repeating unit with a conjugation-ready linker corresponding to the O-antigenic polysaccharide of Acinetobacter junii strain 65","authors":"Aniket Majhi, Samim Sahaji, Anup Kumar Misra","doi":"10.1016/j.carres.2024.109295","DOIUrl":"10.1016/j.carres.2024.109295","url":null,"abstract":"<div><div>A straightforward synthesis of the pentasaccharide with a readily available linker arm corresponding to the <em>O</em>-antigenic polysaccharide of <em>Acinetobacter junii</em> strain 65 has been achieved in good yield. The synthesis has been carried out using thioglycosides as glycosyl donor in the presence of a combination of <em>N</em>-iodosuccinimide (NIS) and trifluoromethanesulfonic acid (TfOH) as thiophilic activator. The yields of the glycosylation steps were very good with satisfactory stereochemistry at the glycosidic linkages. The pentasaccharide derivative has also been obtained using a one-pot iterative glycosylation strategy.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"545 ","pages":"Article 109295"},"PeriodicalIF":2.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yogaletchumy Seevanathan , Norhasnida Zawawi , Abu Bakar Salleh , Siti Nurbaya Oslan , Nur Suhanawati Ashaari , Amir Syahir Amir Hamzah , Suriana Sabri
{"title":"Trehalulose: Exploring its benefits, biosynthesis, and enhanced production techniques","authors":"Yogaletchumy Seevanathan , Norhasnida Zawawi , Abu Bakar Salleh , Siti Nurbaya Oslan , Nur Suhanawati Ashaari , Amir Syahir Amir Hamzah , Suriana Sabri","doi":"10.1016/j.carres.2024.109293","DOIUrl":"10.1016/j.carres.2024.109293","url":null,"abstract":"<div><div>The increasing concern over sugar-related health issues has sparked research interest in seeking alternatives to sucrose. Trehalulose, a beneficial structural isomer of sucrose, is a non-cariogenic sugar with a low glycemic and insulinemic index. Besides its potential as a sugar substitute, trehalulose exhibits high antioxidant properties, making it attractive for various industrial applications. Despite its numerous advantages and potential application in various sectors, the industrial adoption of trehalulose has yet to be established due to lack of studies on its characteristics and practical uses. This review aims to provide a comprehensive overview of the properties of trehalulose, emphasizing its health benefits. The industrial prospects of trehalulose as sweetener and reducing agent, particularly in food and beverages pharmaceutical, and cosmeceutical sectors, are explored. Additionally, the review delves into the sources of trehalulose and the diverse organisms capable of producing trehalulose. The biosynthesis of this sugar primarily involves an enzyme-mediated process. Thus, these enzymes' properties, mechanisms, and the heterologous expression of genes associated with trehalulose production are explored. The strategies discussed in this review can be improved and applied to establish trehalulose bio-factories for efficient synthesis of trehalulose in the future. With further research and development, trehalulose holds promise as a valuable component across various industries.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"545 ","pages":"Article 109293"},"PeriodicalIF":2.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Esmeralda Marín-Cruz , Ricardo Tovar-Miranda , Julio Romero-Ibáñez , José Alvano Pérez-Bautista , Alejandro Cordero-Vargas , Daniel Mendoza-Espinosa , Rosa L. Meza-León , Omar Cortezano-Arellano
{"title":"Chiron approach toward the synthesis of the fused tricyclic core of epi-parvistemonine A","authors":"Esmeralda Marín-Cruz , Ricardo Tovar-Miranda , Julio Romero-Ibáñez , José Alvano Pérez-Bautista , Alejandro Cordero-Vargas , Daniel Mendoza-Espinosa , Rosa L. Meza-León , Omar Cortezano-Arellano","doi":"10.1016/j.carres.2024.109290","DOIUrl":"10.1016/j.carres.2024.109290","url":null,"abstract":"<div><div>A stereoselective synthesis of fused tricyclic framework of <em>epi</em>-parvistemonine A from D-glucono-δ-lactone is described. The synthetic strategic is based on the stereoselective construction of the 7-membered cyclic skeleton <em>via</em> a cross-metathesis reaction followed by a Michael type cyclization promoted by Tf<sub>2</sub>O.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"545 ","pages":"Article 109290"},"PeriodicalIF":2.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noha M. Ahmed , Mohamed M. Ibrahim , Ibrahim M. Elmehasseb , Shaban Y. Shaban
{"title":"Picoplatin (II)-loaded chitosan nanocomposites as effective drug delivery systems: Preparation, mechanistic investigation of BSA/5-GMP/GSH binding and biological evaluations","authors":"Noha M. Ahmed , Mohamed M. Ibrahim , Ibrahim M. Elmehasseb , Shaban Y. Shaban","doi":"10.1016/j.carres.2024.109292","DOIUrl":"10.1016/j.carres.2024.109292","url":null,"abstract":"<div><div>The goal of the current study is to improve the characteristics and bioavailability of the drug picoplatin (PPt) by encapsulating it in chitosan nanoparticles (CS NPs) which allows for the targeted delivery of cytotoxic cargo to cancerous tissue, reducing toxic side effects and raising the therapeutic index. When picoplatin was delivered into the CS, it was able to produce a complex with CS (PPt@CS NPs) that had an appropriate particle size of 275 ± 10 nm, a reasonably low PDI of 0.15 ± 0.05, and high stability (ζ = −22.1 ± 0.3 mV). Since almost all pharmaceuticals work by binding to specific proteins or DNA, the in vitro binding mechanism and affinity of bovine serum albumin (BSA), low molecular building units of nucleic acids (5−GMP), and Glutathione (GSH) (considering that cisplatin resistance could be due to a reaction between cisplatin and GSH) to PPt and PPt@CS NPs were examined using stopped-flow and other spectroscopic approaches. Through two reversible processes, a rapid second-order binding followed by a slower first-order isomerization reaction, and a static quenching mechanism, PPt and PPt@CS NPs bind to BSA with relative reactivity of around (PPt)/(PPt@CS NPs) = 1/2.5. The 5−GMP interaction studies demonstrated that, in addition to changing the binding mechanism, PPt's encapsulation in CS increases its rate of reaction through coordination affinity. PPt interacted with 5-GMP via two reversible processes, a rapid second-order binding to phosphate followed by a slower first−order migration to the N7 of pyrimidine moiety. PPt@CS NPs showed weaker binding to GSH compared to PPt and hence PPt@CS NPs exhibits a lower resistance factor. It was also found that the in vitro drug release of PPt@CS NPs in PBS at pH 7.4 was steady, releasing 30 % of the PPt in just 5 h. Nonetheless, 75 % of the release in a pH 5.4 solution containing 10 mM GSH—a solution that mimics the tumor microenvironment—shows that the PPt@CS NPs system is sensitive to GSH and specifically targets malignant tissue. The encapsulation of PPt in CS complex maintained its anticancer activity, as shown by an in vitro cell-survival assay on HepG2 cancer cell lines and also cleavage efficiency toward the minor groove of pBR322 DNA via the hydrolytic way. These findings collectively suggested that inclusion PPt in CS would be an effective strategy to formulate a novel picoplatin formulation intended for use as targeted anticancer treatment.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"545 ","pages":"Article 109292"},"PeriodicalIF":2.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vivien Nagy , Bergthóra S. Snorradóttir , Héléne Liette Lauzon , Már Másson
{"title":"Design of experiments optimization of N,N,N-trimethyl chitosan synthesis using N,N-diisopropylethylamine base","authors":"Vivien Nagy , Bergthóra S. Snorradóttir , Héléne Liette Lauzon , Már Másson","doi":"10.1016/j.carres.2024.109289","DOIUrl":"10.1016/j.carres.2024.109289","url":null,"abstract":"<div><div>This study presents a novel synthesis method of <em>N</em>,<em>N</em>,<em>N</em>-trimethyl chitosan (TMC) by using a non-nucleophilic base and optimizing the solvent system for enhanced scalability, while addressing critical factors such as viscosity management and stirring efficiency. The study objectives also included achieving high <em>N,N,N</em>-trimethylation without O-methylation while minimizing reagent use. Eight bases, three solvent systems, and varying levels of dilution were explored to mitigate viscosity challenges and gas evolution. <sup>1</sup>H NMR spectroscopy was used to characterize the TMC products. The integral values of the peaks at 3.3, 3.0, and 2.8 ppm, corresponding to trimethyl, dimethyl, and monomethyl groups, were used to quantify the methylation degrees. The most promising initial results were obtained with <em>N,N</em>-diisopropylethylamine (DIPEA) base, and DMF as solvent. Using 6 eq methyl iodide (MeI) relative to chitosan and DIPEA as base, up to 68 % DTM was achieved. Applying Design of Experiments (DoE), the method was further optimized under diluted conditions, crucial for industrial scalability and viscosity control. Results from a full factorial design (3<sup>2</sup>) revealed that diluted medium effectively prevented viscosity concerns, achieving a notably low viscosity of 5.9 cP in the reaction mixture, a 16-fold decrease in viscosity, compared to initial experiments. It was also established that both the MeI reagent and the base addition are significant factors for the DTM response, with both factors showing quadratic effects. The DoE model demonstrated high significance (R = 0.97), high precision for future prediction (Q2 = 0.87), good model validity (0.84) and excellent reproducibility (0.96). The results mark a notable advancement in TMC synthesis, offering an efficient and practical method with significant implications for industrial applications.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"545 ","pages":"Article 109289"},"PeriodicalIF":2.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seaweed-derived etherified carboxymethyl cellulose for sustainable tissue engineering","authors":"Sobia Naseem , Muhammad Rizwan","doi":"10.1016/j.carres.2024.109291","DOIUrl":"10.1016/j.carres.2024.109291","url":null,"abstract":"<div><div>Biodegradability, biocompatibility, abundant supply from renewable sources, and affordability are the outstanding properties of cellulose that have prompted substantial studies into its potential in biomedical applications. Beyond terrestrial sources of cellulose, seaweeds have attracted much attention as a potential source of cellulose because they are widely available. Cellulose and its byproducts may be extracted from various macroalgae species, including red, green, and brown algae. The extracted cellulose's qualities vary depending on the algae species, age, and extraction process utilized. Cellulose's characteristics are enhanced through chemical modifications, specifically etherification and esterification, which substitute functional groups for hydroxyl groups, yielding a range of products, including cellulose acetate (CA), cellulose nitrate, cellulose sulfate, methylcellulose, and carboxymethyl cellulose (CMC). The ability to modify CMC characteristics for particular applications is explored through techniques including grafting processes mixing, and cross-linking with other polymers. Moreover, tissue engineering is given significant consideration in the growing use of CMC and its altered forms in biological applications. These alterations allow for the production of scaffolds that promote tissue regeneration and cell proliferation, enabling CMC-based scaffolds for various tissue engineering uses. This review provides a comprehensive overview of CMC's properties, modifications, and potential in tissue engineering.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"545 ","pages":"Article 109291"},"PeriodicalIF":2.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultrasound-promoted removal of benzylidene and isopropylidene acetal protection of carbohydrates in presence of sulfonated graphene (GR-SO3H) as a sustainable acid catalyst","authors":"Padmashri Rabha, Rajib Panchadhayee","doi":"10.1016/j.carres.2024.109288","DOIUrl":"10.1016/j.carres.2024.109288","url":null,"abstract":"<div><div>Sulfonated graphene (GR-SO<sub>3</sub>H) was prepared and used as an efficient and sustainable catalyst to deprotect <em>O</em>-benzylidene and <em>O</em>-isopropylidene acetal of carbohydrates under ultrasound (US) irradiation. The solid catalyst can recovered by simple filtration and used several times without much loss in reactivity. This methodology not only reduces the reaction time but also increases the yield. Moreover, the work-up and purification procedure is very simple and also effective for large-scale preparation.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"545 ","pages":"Article 109288"},"PeriodicalIF":2.4,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haijuan Qin , Zhiwei Huang , Xue Mi , Shuai Zhang , Han-Yu Liu , Jia-Ning Wang , Mingming Xue , Zhiqi Lao , Yang Yang
{"title":"Preparation of a thioxoimidazolidin-linked sialoside BSA conjugate for the inhibition of influenza virus","authors":"Haijuan Qin , Zhiwei Huang , Xue Mi , Shuai Zhang , Han-Yu Liu , Jia-Ning Wang , Mingming Xue , Zhiqi Lao , Yang Yang","doi":"10.1016/j.carres.2024.109287","DOIUrl":"10.1016/j.carres.2024.109287","url":null,"abstract":"<div><div>A novel thioxoimidazolidin-linked sialoside bovine serum albumin (<strong>WM-BSA</strong>) conjugate was synthesized and evaluated as an inhibitor of influenza virus hemagglutinin (HA) and neuraminidase (NA). The multivalent conjugate was prepared by the attachment of thioxoimidazolidin-sialoside monomer (<strong>WM</strong>) to BSA <em>via</em> adipate linker. Surface plasmon resonance analysis revealed that <strong>WM-BSA</strong> exhibited potent binding to recombinant influenza HA and NA proteins, with dissociation constants in the submicromolar range. <strong>WM-BSA</strong> also demonstrated inhibitory activities in the low micromolar range against HA and NA proteins from multiple influenza strains. Investigation of cytopathic effects in infected MDCK cells indicated that <strong>WM-BSA</strong> possessed antiviral activity with EC<sub>50</sub> values of 35–55 μM. The multivalent presentation of sialosides on the BSA scaffold significantly enhanced both the binding affinity and degree of inhibition compared to the monomeric compound <strong>WM</strong>. These results demonstrate the potential of multivalent sialoside-protein conjugate as a platform for developing novel anti-influenza agent.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"545 ","pages":"Article 109287"},"PeriodicalIF":2.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuvam Mukherjee , Mathias E. Chemen , Saikat Pal , Luana E. Piccini , Subrata Jana , Elsa B. Damonte , Bimalendu Ray , Cybele C. Garcia , Sayani Ray
{"title":"Sulfated xylogalactofucans from Spatoglossum asperum: Production, structural features and antiviral activity","authors":"Shuvam Mukherjee , Mathias E. Chemen , Saikat Pal , Luana E. Piccini , Subrata Jana , Elsa B. Damonte , Bimalendu Ray , Cybele C. Garcia , Sayani Ray","doi":"10.1016/j.carres.2024.109286","DOIUrl":"10.1016/j.carres.2024.109286","url":null,"abstract":"<div><div>In cultured cells, herpes simplex virus (HSV) infectivity is successfully inhibited by sulfated polysaccharides. Herein, we utilized an amalgamated extraction-sulfation procedure to produce two xylogalactofucan sulfates (S203 and S204) from <em>Spatoglossum asperum</em> using ClSO<sub>3</sub>H.Pyr/DMF and SO<sub>3</sub>.Pyr/DMF reagents, respectively. Among these xylogalactofucans, the 17 ± 12 kDa polymer (S203) with 14 % sulfate exhibited activity on several HSV variants, including an acyclovir-resistant HSV-1 strain. This is the first report of the anti-HSV activity of a sulfated xylogalactofucan of <em>S. asperum</em>. The effective concentration 50 % (EC<sub>50</sub>) value of S203 against HSV-1 strain F was 0.6 μg/mL with a selectivity index of 833. The backbone of this polymer (S203) is made up mostly of (1 → 4)-linked-α-<em>l</em>-Fuc<em>p</em> units having sulfate groups typically at O–3 and sometimes at O–2 positions. Oligosaccharides containing Xyl, Gal and Fuc units confirms that they are an integral part of a single polymer, another novelty of this study.</div><div>The EC<sub>50</sub> values of the native xylogalactofucan (S202) and the SO<sub>3</sub>.Pyr/DMF modified polymer (S204), containing 2 % and 6 % sulfates, were >100 and 3.3 μg/mL, respectively. Introduction of sulfate groups enhanced their capability to inhibit the infection of cells by HSV-1. These findings suggest feasibility of inhibiting HSV attachment to cells by blocking viral entry with polysaccharide having specific structure.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"545 ","pages":"Article 109286"},"PeriodicalIF":2.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naoko Osada , Masamichi Nagae , Takahiro Yamasaki , Anne Harduin-Lepers , Yasuhiko Kizuka
{"title":"Regulation of human GnT-IV family activity by the lectin domain","authors":"Naoko Osada , Masamichi Nagae , Takahiro Yamasaki , Anne Harduin-Lepers , Yasuhiko Kizuka","doi":"10.1016/j.carres.2024.109285","DOIUrl":"10.1016/j.carres.2024.109285","url":null,"abstract":"<div><div><em>N</em>-Glycan branching critically regulates glycoprotein functions and is involved in various diseases. Among the glycosyltransferases involved in <em>N</em>-glycan branching is the human <em>N</em>-acetylglucosaminyltransferase-IV (GnT-IV) family, which has four members: GnT-IVa, GnT-IVb, GnT-IVc, and GnT-IVd. GnT-IVa and GnT-IVb have glycosyltransferase activity that generates the type-2 diabetes-related β1,4-GlcNAc branch on the α1,3-Man arm of <em>N</em>-glycans, whereas GnT-IVc and GnT-IVd do not. Recently, this enzyme family was found to have a unique lectin domain in the C-terminal region, which is essential for enzyme activity toward glycoprotein substrates but not toward free <em>N</em>-glycans. Furthermore, interaction between the lectin domain of GnT-IV and <em>N</em>-glycan attached to GnT-IV enables self-regulation of GnT-IV activity, indicating that the lectin domain plays a unique and pivotal role in the regulation of GnT-IV activity. In this review, we summarize the GnT-IV family's biological functions, selectivity for glycoprotein substrates, and regulation of enzymatic activity, with a focus on its unique C-terminal lectin domain.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"545 ","pages":"Article 109285"},"PeriodicalIF":2.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}