{"title":"Large-scale elimination of subterranean termite colonies of the genus Reticulitermes (Blattodea: Heterotermitidae) from town centers in Spain.","authors":"David Mora, David Hernández-Teixidor","doi":"10.1093/jee/toaf039","DOIUrl":"https://doi.org/10.1093/jee/toaf039","url":null,"abstract":"<p><p>Reticulitermes grassei Clément and R. banyulensis Clément are native termites of the Iberian Peninsula and are considered harmful pests in several places. Subterranean termites cause severe damage to wooden structures around the world. In Spain, wood is used in traditional construction, and many town centers feature such architecture. The presence of these pests is often overlooked until the damage becomes considerable over a large area. Baiting with a chitin-synthesis inhibitor is the only option to eliminate all termite colonies over large areas. Here, data are assessed on the area-wide management of Reticulitermes species in 5 town centers in Spain, after implementing a bait system with 0.5% hexaflumuron for 5 years. Our protocol included an initial survey, treatment with hexaflumuron baits, and a post-bait monitoring program. Our results showed that all detectable termite colonies affecting urban areas of 23,000-170,500 m2 were eliminated using the protocol described. This was achieved with a minimal amount of hexaflumuron (58 and 190 g), in less than 1 year on average (7-16 months) in warm dry southern and damp northern areas. The number of stations used ranged from 509 to 1,417 for each treatment area, of which 7.83% and 39% had termite activity. Following the treatments, termite activity has been absent in treated areas for more than 10 years. Our studies confirmed that it is possible to eliminate subterranean termite populations of the genus Reticulitermes from large areas in Europe using hexaflumuron baits and achieving long-term termite-free zones is feasible.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143560316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahmoud S Abdel-Dayem, Hathal M Al Dhafer, Ahmed M Soliman, Amin N Al Ansi, Saad A El-Sonbati, Alrabea A E Ishag, Amr Mohamed, Mustafa Soliman
{"title":"Climate change and geographical distribution projections for major leaf beetles (Coleoptera: Chrysomelidae) in Saudi Arabia.","authors":"Mahmoud S Abdel-Dayem, Hathal M Al Dhafer, Ahmed M Soliman, Amin N Al Ansi, Saad A El-Sonbati, Alrabea A E Ishag, Amr Mohamed, Mustafa Soliman","doi":"10.1093/jee/toaf046","DOIUrl":"https://doi.org/10.1093/jee/toaf046","url":null,"abstract":"<p><p>Climate change has a substantial impact on the quality and diversity of insect pests, which may have adverse ecological and economic effects. The family Chrysomelidae represents one of the most economically and ecologically important groups within Coleoptera, with species acting as agricultural pests and contributing substantially to biodiversity in arid regions. Based on bioclimatic, topographic, and vegetation data, the current and future distributions of 4 chrysomelids (Caryedon acaciae (Gyllenhal, 1833), Chaetocnema pulla Chapuis, 1879, Phyllotreta cheiranthi Weise, 1903, and Spermophagus sericeus (Geoffroy, 1785)) in Saudi Arabia were predicted using MaxEnt modeling for 2050 under 2 Shared Socioeconomic Pathways (SSPs), SSP126 (low emission) and SSP585 (high emission) scenarios. The leaf beetle models showed strong performance, with average area under the curve (AUC) values ranging from 0.86 to 0.96 and average TSS values ranging from 0.52 to 0.65. Five predictors were chosen for each species from 21 environmental variables. The results show that the key ecological factors that influence species distributions varied, with vegetation being the most influential. According to habitat suitability maps, in the future, such distribution will be severely altered, mostly by climate change. More precisely, C. acaciae will face minor range shifts, while C. pulla, P. cheiranthi, and S. sericeus will expand their ranges substantially, especially in the Eastern Province. Our results confirm the importance of implementing adaptive pest-management strategies to address the potential range expansions of various agricultural pests, which could intensify local ecological challenges and pose a heightened threat to agricultural systems.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143558803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nooshin Zandi-Sohani, Melody A Keena, Michael R Gallagher, Anthony Cullen
{"title":"Heat treatments to kill eggs of two invasive forest insects: Lycorma delicatula (Hemiptera: Fulgoridae) and Lymantria dispar (Lepidoptera: Erebidae).","authors":"Nooshin Zandi-Sohani, Melody A Keena, Michael R Gallagher, Anthony Cullen","doi":"10.1093/jee/toaf042","DOIUrl":"https://doi.org/10.1093/jee/toaf042","url":null,"abstract":"<p><p>The spotted lanternfly (Lycorma delicatula) and spongy moth (Lymantria dispar) are notorious invasive forest pests that are spread through human-mediated transport to invade new habitats. In this study, spotted lanternfly and spongy moth eggs were exposed to various temperature-exposure time (35 to 70 °C and 15 to 135 min) treatments in the laboratory. Spotted lanternfly egg masses were collected from various sites in 2022 and 2023, while the spongy moth egg masses were obtained from lab-reared colonies. Heat treatments were applied using an Isotemp microbiological incubator in the spring of 2023 and the spring and fall of 2024. No eggs of either species hatched when exposed to temperatures ≥ 60 °C for durations longer than 15 min. Spotted lanternfly egg hatch declined at temperatures ≥ 45 °C, while reduced hatch of spongy moth eggs was not observed until temperatures reached ≥ 50 °C. The season (spring or fall) in which the eggs were heat treated did not affect the hatch rate of spotted lanternfly eggs; however, spongy moth eggs were more vulnerable in the fall than in the spring. These findings suggest that heat treatment regimes that are already being used to kill insects in wood may effectively kill the eggs of both species on various substrates and that protocols for killing eggs at lower temperatures on more sensitive substrates may be possible by using longer-duration exposures.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143559832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lovely Adhikary, Hugh A Smith, Vance M Whitaker, Sriyanka Lahiri
{"title":"Cultivating resilience: assessing commercial strawberry cultivars for chilli thrips management in Florida strawberries.","authors":"Lovely Adhikary, Hugh A Smith, Vance M Whitaker, Sriyanka Lahiri","doi":"10.1093/jee/toaf041","DOIUrl":"https://doi.org/10.1093/jee/toaf041","url":null,"abstract":"<p><p>Strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae), is an important specialty crop in Florida, generating about $500 million in annual revenue. An invasive insect, chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), has emerged as a major strawberry pest, causing considerable yield and revenue loss in recent years. Pesticide application is the leading control option but is not always recommended due to resistance development. Host plant resistance (HPR) can be a novel option to manage S. dorsalis sustainably. Four commercial cultivars, 'Florida Brilliance', 'Florida Medallion FL16.30-128', 'Sweet Sensation 'Florida127', and 'Florida Pearl FL16.78-109', were evaluated for their performance in the 2021-2022 field season under the natural population of S. dorsalis. In 2022-2023 and 2023-2024, 3 more cultivars, 'Strawberry Festival', 'Florida Radiance', and 'Florida Beauty', were added to this list. Twenty bare-root strawberry transplants were planted in each field plot, and each cultivar was replicated 8 times in a randomized complete block design. Damage on trifoliate, number of adults and larval S. dorsalis on trifoliate, number of flowers, and marketable fruit yield were assessed for each cultivar. Results revealed that 'Florida Pearl 109' had the highest insect count and damage index of all 3 year. 'Strawberry Festival' also showed the same trend after its introduction in the second year. 'Florida Brilliance' and 'Sweet Sensation' had the lowest damage index, lowest adult insect count, and higher marketable yield compared to 'Florida Pearl 109' and 'Strawberry Festival'. Therefore, utilizing resistant cultivars can be an effective tool for managing S. dorsalis in the field.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143559439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinjuan Fan, Xiao Zhang, Wenbin Jiang, Jin Xu, Mengyang Wu, Xinlong Dai, Fulin Xu, Suzhen Niu, Yingqin He
{"title":"Integrative transcriptome and metabolome analysis uncovers the Toxoptera aurantii (Hemiptera: Aphididae) response of two Camellia sinensis (Ericales: Theaceae) cultivars.","authors":"Jinjuan Fan, Xiao Zhang, Wenbin Jiang, Jin Xu, Mengyang Wu, Xinlong Dai, Fulin Xu, Suzhen Niu, Yingqin He","doi":"10.1093/jee/toaf044","DOIUrl":"https://doi.org/10.1093/jee/toaf044","url":null,"abstract":"<p><p>The tea aphid Toxoptera aurantii Boyer (Hemiptera: Aphididae) is a destructive pest that infests tea plants. The resistance mechanisms of the tea plant against T. aurantii infestation are largely unexplored. This study investigates the defensive response of tea plants to T. aurantii feeding using an aphid-resistant Camellia sinensis cultivar 'Qiancha1' (QC1) and an aphid-susceptible C. sinensis cultivar 'Huangjinya' (HJY). Transcriptomics and metabolomics analyses were conducted on 4 samples: QCCK (T. aurantii non-infested QC1), HJYCK (T. aurantii non-infested HJY), QC24 (T. aurantii-infested QC1 for 24 h), and HJY24 (T. aurantii-infested HJY for 24 h). The results showed that the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) in the 2 comparison groups (QCCK vs. QC24 and HJYCK vs. HJY24) were primarily enriched in metabolic pathways, including hormone signal transduction, phenylpropanoid biosynthesis and flavonoid biosynthesis. Following aphid infestation, the resistant cultivar QC1 exhibited more DEGs and DAMs than the susceptible cultivar HJY, indicating a stronger response to T. aurantii feeding stress. Additionally, the expression of phenylpropanoid- and flavonoid-related genes (CYP, 4CL, FLS, F3H, and LAR) was significantly upregulated in the resistant cultivar QC1 compared with that in the susceptible cultivar HJY. Metabolites involved in phenylpropanoid/flavonoid pathways, such as p-coumaroyl-CoA, caffeoylquinic acid, and feruloyl-CoA, were exclusively induced in QC1. These findings suggest that phenylpropanoid/flavonoid pathways play pivotal roles in tea plant resistance to T. aurantii infestation, providing valuable insights for the breeding and utilization of resistant germplasms.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143560308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan F Barrera, Jassmin Cruz-Bustos, Javier de-la-Rosa-Cancino, Armando Equihua-Martínez
{"title":"Tricolus simplicis (Coleoptera: Curculionidae: Scolytinae): a new pest of Robusta coffee (Coffea canephora) in Mexico.","authors":"Juan F Barrera, Jassmin Cruz-Bustos, Javier de-la-Rosa-Cancino, Armando Equihua-Martínez","doi":"10.1093/jee/toaf048","DOIUrl":"https://doi.org/10.1093/jee/toaf048","url":null,"abstract":"<p><p>Tricolus simplicis Wood 1974 (Coleoptera: Curculionidae: Scolytinae) is reported to bore and reproduce on the branches of Robusta coffee (Coffea canephora) in Chiapas, Mexico. This is the first report of T. simplicis associated with Robusta coffee worldwide. The risk this insect poses for coffee production is discussed.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143560393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Baojuan Zeng, Jianghao Ding, Yajuan Xiao, Shilong Wang, Jie Zhong, Yueru Ye, Huiru Zhou, Jing Song, Wenxin Zhao, Shutang Zhou, Huidong Wang
{"title":"Monitoring insecticide resistance and target-site mutations in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) in China.","authors":"Baojuan Zeng, Jianghao Ding, Yajuan Xiao, Shilong Wang, Jie Zhong, Yueru Ye, Huiru Zhou, Jing Song, Wenxin Zhao, Shutang Zhou, Huidong Wang","doi":"10.1093/jee/toaf031","DOIUrl":"https://doi.org/10.1093/jee/toaf031","url":null,"abstract":"<p><p>The fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), a notorious invasive pest, has been widely monitored for insecticide resistance. Since its invasion of China in late 2018, early to mid-stage monitoring of resistance is particularly crucial to inform effective control strategies. Resistance ratios (RRs) derived from bioassays offer valuable insights into the overall resistance levels of field populations, while the detection of resistance allele frequencies helps uncover the potential causes of resistance variation. In this study, we established a baseline of susceptibility in third-instar larvae to 7 insecticides using a laboratory strain Xinzheng2019 and assessed the resistance levels of 9 populations collected from central and southern China between 2022 and 2023. Compared to the susceptible Xinzheng2019 strain, 2 field populations showed low-level resistance (RR = 5-10) to indoxacarb, and one exhibited low-level resistance to chlorantraniliprole. Minor resistance (RR = 3-5) was observed in 2 populations to lambda-cyhalothrin, 5 to indoxacarb, and 5 to chlorantraniliprole. All populations remained susceptible (RR < 3) to spinetoram, emamectin benzoate, chlorfenapyr, and lufenuron. Molecular analysis of 11 mutation sites across 3 key resistance-related genes (Ace-1, GluCl, and voltage-gated sodium channel [VGSC]) revealed that 52.1% of all tested samples carried either homozygous or heterozygous resistance alleles at the F290V locus of the Ace-1 gene, while no resistance mutations were detected at other sites. Our findings offer valuable insights into the insecticide resistance status of S. frugiperda field populations in China and provide guidance for effective chemical insecticide use.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143560390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Denis O Kiobia, Canicius J Mwitta, Peter C Ngimbwa, Jason M Schmidt, Guoyu Lu, Glen C Rains
{"title":"Machine-learning approach facilitates prediction of whitefly spatiotemporal dynamics in a plant canopy.","authors":"Denis O Kiobia, Canicius J Mwitta, Peter C Ngimbwa, Jason M Schmidt, Guoyu Lu, Glen C Rains","doi":"10.1093/jee/toaf035","DOIUrl":"https://doi.org/10.1093/jee/toaf035","url":null,"abstract":"<p><p>Plant-specific insect scouting and prediction are still challenging in most crop systems. In this article, a machine-learning algorithm is proposed to predict populations during whiteflies (Bemisia tabaci, Hemiptera; Gennadius Aleyrodidae) scouting and aid in determining the population distribution of adult whiteflies in cotton plant canopies. The study investigated the main location of adult whiteflies relative to plant nodes (stem points where leaves or branches emerge), population variation within and between canopies, whitefly density variability across fields, the impact of dense nodes on overall canopy populations, and the feasibility of using machine learning for prediction. Daily scouting was conducted on 64 non-pesticide cotton plants, focusing on all leaves of a node with the highest whitefly counts. A linear mixed-effect model assessed distribution over time, and machine-learning model selection identified a suitable forecasting model for the entire canopy whitefly population. Findings showed that the top 3 to 5 nodes are key habitats, with a single node potentially accounting for 44.4% of the full canopy whitefly population. The Bagging Ensemble Artificial Neural Network Regression model accurately predicted canopy populations (R² = 85.57), with consistency between actual and predicted counts (P-value > 0.05). Strategic sampling of the top nodes could estimate overall plant populations when taking a few samples or transects across a field. The suggested machine-learning model could be integrated into computing devices and automated sensors to predict real-time whitefly population density within the entire plant canopy during scouting operations.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143560384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caifeng Li, Cuiying Wang, Xianwen Yang, Duo Wang, Fang Wang
{"title":"Modeling the potential global distribution of the invasive Jack Beardsley mealybug (Hemiptera: Pseudococcidae) under climate change.","authors":"Caifeng Li, Cuiying Wang, Xianwen Yang, Duo Wang, Fang Wang","doi":"10.1093/jee/toaf029","DOIUrl":"https://doi.org/10.1093/jee/toaf029","url":null,"abstract":"<p><p>The Jack Beardsley mealybug, Pseudococcus jackbeardsleyi Gimpel & Miller (Hemiptera: Pseudococcidae), is a dangerous invasive pest that feeds on plants more than 115 genera from 54 families, and has spread over 59 countries or regions, often causing direct and indirect damage to host plants, and resulting in significant economic losses. In this study, we assessed the potential global distribution of P. jackbeardsleyi using a Maximum Entropy (MaxEnt) model under current and future climate scenarios. Here, we obtained prediction models with high credibility and accuracy, which showed that isothermality (Bio 3) and annual precipitation (Bio 12) were the environmental variables with the largest contribution on the potential distribution of this pest. The potential distribution areas predicted by this study were mainly located in South America, Central Africa, the southern regions of Asia and the eastern coast of Australia. Under future climate scenarios, the total geographical distribution of this pest will contract to varying degrees by the end of this century, but the highly suitable areas will increase. This study provides a reference for the development of control strategies, but also offers a scientific basis for the effective biological control of this pest.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143560387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Carolina Monmany-Garzia, Natacha Chacoff, Roxana Aragón, Alexis Sosa, Virginia C Aparicio, M Marta Ayup, Alberto Galindo-Cardona
{"title":"Effects of soybean fields on the health of Apis mellifera (Hymenoptera: Apidae) in the Chaco ecoregion.","authors":"A Carolina Monmany-Garzia, Natacha Chacoff, Roxana Aragón, Alexis Sosa, Virginia C Aparicio, M Marta Ayup, Alberto Galindo-Cardona","doi":"10.1093/jee/toaf002","DOIUrl":"https://doi.org/10.1093/jee/toaf002","url":null,"abstract":"<p><p>Honey bees (Apis mellifera) are important pollinators for natural and cultivated species. Due to their high sensitivity to stressors, they are also valuable indicators of environmental changes and agricultural management practices. In this study, we compared the performance and incidence of pesticides over sentinel hives within forest remnants with those within linear forest fragments (LFF) surrounded by soybean fields under conventional management. Sentinel hives in LFF showed some signs of deterioration, such as colony collapse, low numbers of brood frames, and pesticide occurrences, but honey production and the number of adult bees were similar to hives in the forest. Soybean pollen was scarce in honey and absent in bee bread, suggesting that bees may be relying more on wild plant species. We detected 5 pesticides (azoxystrobin, carbendazim, chlorpyrifos, imidacloprid, and coumaphos) in hives both at forests and LFF in pollen, bee bodies, and wax; pesticides in honey were detected in old sentinel hives (2 yr of exposition to agricultural conventional management). Only 2 of the 5 pesticides were applied in one of the farms under study, highlighting the importance of considering landscape-scale agricultural management. Our results indicate that conventional agriculture of soybean/maize primarily affected the performance of beehives, and pesticides were detected in honey only after long exposure to hives. Beekeeping in soybean fields in the Chaco could be feasible if cautions were followed, such as the conservation of forest fragments and key plant species, appropriate pesticide schedules, coordinated applications among farms, and linear forest remnants improvements.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143559747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}