{"title":"Correction to: Higher prevalence of sacbrood virus in Apis mellifera (Hymenoptera: Apidae) colonies after pollinating highbush blueberries.","authors":"","doi":"10.1093/jee/toae198","DOIUrl":"10.1093/jee/toae198","url":null,"abstract":"","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"2200"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473034/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danielle D Gray, Stephen Biles, Lina Bernaola, D Tyler Mays, Wade Walker, Tyler Towles, David Kerns, Dalton C Ludwick
{"title":"Oebalus pugnax (Hemiptera: Pentatomidae) resistance to lambda-cyhalothrin in Texas and efficacy of 2 alternative insecticides in grain sorghum.","authors":"Danielle D Gray, Stephen Biles, Lina Bernaola, D Tyler Mays, Wade Walker, Tyler Towles, David Kerns, Dalton C Ludwick","doi":"10.1093/jee/toae155","DOIUrl":"10.1093/jee/toae155","url":null,"abstract":"<p><p>Along the Coastal Bend of Texas, the rice stink bug, Oebalus pugnax (F.), is a major pest of grain sorghum and rice that is primarily managed by insecticide applications. Reports of rice stink bug resistance to pyrethroids in Texas first surfaced in 2015 and continued to spread. To determine the status of pyrethroid resistance, rice stink bug populations across Texas and Louisiana were evaluated from 2021 to 2023. Mortality was assessed through glass vial exposures to eight concentrations (0, 0.03, 0.1, 0.3, 1, 3, 10, and 30 μg/vial) of a pyrethroid, lambda-cyhalothrin. The concentration of lambda-cyhalothrin required to kill 50% (LC50) of each population was estimated by probit analysis. Furthermore, the efficacy of insecticides, including lambda-cyhalothrin, dimethoate, and dinotefuran, were evaluated in field experiments conducted in 2021. Our results indicated that 14 of the 21 rice stink bug populations sampled were resistant to lambda-cyhalothrin, with LC50 values ranging from 42 to 1,600 times higher than a susceptible population. In the field trial, lambda-cyhalothrin did not control rice stink bugs. Dinotefuran provided excellent control of nymphs, but dimethoate provided greater control of adult rice stink bugs. To our knowledge, this is the first study to thoroughly evaluate the extent or geographic range of pyrethroid resistance in Texas for rice stink bugs.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"2060-2069"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chelsea M Smith, Madeline P Griffin, Henry Y Fadamiro, Arthur G Appel
{"title":"Toxicity of cockroach gel baits to the oothecal parasitoid Aprostocetus hagenowii (Hymenoptera: Eulophidae) and implications for cockroach integrated pest management.","authors":"Chelsea M Smith, Madeline P Griffin, Henry Y Fadamiro, Arthur G Appel","doi":"10.1093/jee/toae157","DOIUrl":"10.1093/jee/toae157","url":null,"abstract":"<p><p>Aprostocetus hagenowii (Ratzeburg) is a parasitoid wasp that parasitizes the oothecae of peridomestic pest cockroaches. A. hagenowii has been used in integrated pest management (IPM) programs for cockroach control but little is known about how this parasitoid responds to the insecticides commonly used for cockroach management. Five insecticidal gel bait products containing indoxacarb, clothianidin, fipronil, dinotefuran, or abamectin B1 were tested for their toxicity towards A. hagenowii and the American cockroach, Periplaneta americana (L.; Blattodea: Blattidae), a host of A. hagenowii and a common pest. All baits were tested as fresh and 1-d aged deposits. Indoxacarb was the only active ingredient that did not cause significant (P < 0.05) A. hagenowii mortality compared to the control in both the fresh and aged gel experiments (Median survival time [MST]s: 168 h fresh, 72 h aged). Clothianidin caused the lowest A. hagenowii MSTs across experiments (24 h, fresh and aged). All baits caused significant P. americana mortality as fresh and 1-d aged deposits (P < 0.05). Indoxacarb appears most compatible with A. hagenowii in cockroach IPM.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"2044-2050"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grace Tiwari, Navneet Kaur, Nicole P Anderson, K Christy Tanner, Danielle M Lightle, Alison R Willette, Brian C Donovan, Seth J Dorman
{"title":"Evaluating foliar insecticides and economic thresholds for Tychius picirostris (Coleoptera: Curculionidae) management in Oregon white clover seed production.","authors":"Grace Tiwari, Navneet Kaur, Nicole P Anderson, K Christy Tanner, Danielle M Lightle, Alison R Willette, Brian C Donovan, Seth J Dorman","doi":"10.1093/jee/toae163","DOIUrl":"10.1093/jee/toae163","url":null,"abstract":"<p><p>The clover seed weevil, Tychius picirostris Fabricius (Coleoptera: Curculionidae), is a major pest in Oregon white clover seed crops. Reliance on synthetic pyrethroid insecticides and limited availability of diverse modes of action (MoAs) has increased insecticide resistance selection in regional T. picirostris populations, emphasizing the need to evaluate novel chemistries and rotational strategies for effective insecticide resistance management (IRM). The efficacy of 8 foliar insecticide formulations for managing T. picirostris adult and larval life stages was determined in small and large-plot field trials across 2 crop years. In both years, bifenthrin (Brigade 2EC), the grower's standard, showed negligible adult and larval suppression. Insecticide formulations with isocycloseram and cyantraniliprole active ingredients reduced adult and larval populations when applied at BBCH 59-60 (prebloom) and BBCH 65-66 (full bloom) growth stages, respectively. While differences in T. picirostris abundance were observed among insecticide treatments, seed yield differences were not detected in large-plot trials. Larval abundance was correlated with reduced seed yield, and an economic threshold of ≥3 larvae per 30 inflorescences was determined as a conservative larval threshold to justify foliar applications of diamide insecticides. Additional commercial white clover seed fields were surveyed to compare larval scouting techniques, including a standard Berlese funnel and a grower's do-it-yourself funnel. Both larval extraction techniques were correlated and provided similar estimates of larval abundance. These findings demonstrate new MoAs, optimal insecticide application timing, and larval monitoring methods that can be incorporated into an effective T. picirostris IRM program in white clover seed crops.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"1892-1900"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthias Wernicke, Alois Egartner, Sylvia Blümel, Cleopatra A Moraiti, Nikos T Papadopoulos
{"title":"Overwintering potential of the Mediterranean fruit fly (Diptera: Tephritidae) in Austria.","authors":"Matthias Wernicke, Alois Egartner, Sylvia Blümel, Cleopatra A Moraiti, Nikos T Papadopoulos","doi":"10.1093/jee/toae180","DOIUrl":"10.1093/jee/toae180","url":null,"abstract":"<p><p>The Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), one of the most important invasive pests of fresh fruits and vegetables from the coastal Mediterranean habitats, is expanding its current geographic distribution to cooler more temperate areas of Europe. Every year since 2010 the fly is detected in the area of Vienna, Austria. However, whether it can establish permanent populations is not known. In this current paper, the capacity of C. capitata to overwinter in Vienna, Austria (48.1° northern latitude) was studied over 2 consecutive winter seasons (2020-2022). Overwintering trials with different life stages (larva, pupa, and adult) of C. capitata were performed in the open field and in the protected environment of a basement without a heating system. Control flies were kept under constant conditions in a climate chamber (25 °C, 60% RH, 14:10 L:D). Our data showed that no life stage of the Mediterranean fruit fly was able to survive the Austrian winter in the open field. However, in the protected environment C. capitata outlived the winter months in all studied life stages at least in small numbers and several surviving females were able to lay eggs at the time of the following fruiting season. Implications of these findings for the ongoing geographic range expansion of the pest in temperate European countries are discussed.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"1983-1994"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473042/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Audrey Simard, Megan Gendjar, Emily Merewitz, Benjamin A McGraw
{"title":"Inducible defense phytohormones in annual bluegrass (Poa annua) and creeping bentgrass (Agrostis stolonifera) in response to annual bluegrass weevil (Listronotus maculicollis) infestation.","authors":"Audrey Simard, Megan Gendjar, Emily Merewitz, Benjamin A McGraw","doi":"10.1093/jee/toae153","DOIUrl":"10.1093/jee/toae153","url":null,"abstract":"<p><p>The annual bluegrass weevil (Listronotus maculicollis) is the most damaging insect pest of short-mown turfgrass on golf courses in eastern North America. Listronotus maculicollis larvae cause limited visible damage as stem-borers (L1-3), compared to the crown-feeding (L4-5) developmental instars. Prolonged larval feeding results in discoloration and formation of irregular patches of dead turf, exposing soil on high-value playing surfaces (fairways, collars, tee boxes, and putting greens). Annual bluegrass (Poa annua) is highly susceptible to L. maculicollis compared to a tolerant alternate host plant, creeping bentgrass (Agrostis stolonifera). This study explored whether defense signaling phytohormones contribute to A. stolonifera tolerance in response to L. maculicollis. Concentrations (ng/g) of salicylic acid (SA), jasmonic acid (JA), jasmonic-isoleucine (JA-Ile), 12-oxophytodienoic acid (OPDA), and abscisic acid (ABA) were extracted from turfgrass (leaf, stem, and root) tissue samples as mean larval age reached 2nd (L2), 3rd (L3), and 4th (L4) instar. Poa annua infested with L. maculicollis larvae (L2-4) possessed significantly greater SA in above-ground tissues than A. stolonifera. Levels of constitutive JA, JA-Ile, OPDA, and ABA were significantly higher within non-infested A. stolonifera aboveground tissues compared to P. annua. Inducible defense phytohormones may play a role in P. annua susceptibility to L. maculicollis but are unlikely to provide tolerance in A. stolonifera. Additional studies in turfgrass breeding, particularly focusing on cultivar selection for increased constitutive JA content, could provide a non-chemical alternative management strategy for L. maculicollis for turfgrass managers.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"2113-2122"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Destiny N Mann, Kasey T Hobert, Amy S Biddle, Michael S Crossley
{"title":"Black soldier fly (Diptera: Stratiomyidae) larvae reduce cyathostomin (Nematoda: Strongylidae) eggs but develop poorly on horse manure.","authors":"Destiny N Mann, Kasey T Hobert, Amy S Biddle, Michael S Crossley","doi":"10.1093/jee/toae183","DOIUrl":"10.1093/jee/toae183","url":null,"abstract":"<p><p>Cyathostomins are common digestive tract parasites of grazing horses that spread through contact with horse feces. Horse feces are colonized by a variety of organisms, some of which could serve to reduce parasite loads in horse pastures. Black soldier fly (Hermetia illucens L.; Diptera: Stratiomyidae) larvae (BSFL) could be an ideal candidate for biological control of cyathostomins, due to their near-global distribution, low risk of pathogen transmission, ability to develop on a variety of nutrient-poor substrates (including horse manure), and dramatic effect on microbial communities that cyathostomins depend on. Here, using controlled feeding bioassays, we evaluated the effect of BSFL on cyathostomin egg densities in horse manure while also tracking BSFL performance on manure relative to standard grain-based diets. We found that BSFL consumed less substrate, were slower to reach the prepupal stage, and ultimately yielded less biomass when reared on horse manure compared to grain-based diets. However, BSFL reduced average cyathostomin egg densities in horse manure by over 3-fold. Overall, our results suggest that despite horse manure being a poor substrate for BSFL growth, BSFL effectively reduce cyathostomin egg loads in infected horse manure, though the mechanisms by which they do this are uncertain. While BSFL are known to transform the microbial communities within a diversity of rearing substrates, their effect on larger, parasitic organisms in animal manures may be underappreciated. Promoting the decomposition of infected horse manure with BSFL might be a promising approach to managing parasite populations among grazing horses.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"1780-1785"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juarez da S Alves, Larissa Pasqualotto, Vanessa N Soares, Michele Trombin de Souza, Mireli Trombin de Souza, Matheus Rakes, Renato J Horikoshi, Leonardo L Miraldo, Ramiro L F Ovejero, Geraldo U Berger, Daniel Bernardi
{"title":"Life table study of Rachiplusia nu (Lepidoptera: Noctuidae) on different food sources and artificial diet.","authors":"Juarez da S Alves, Larissa Pasqualotto, Vanessa N Soares, Michele Trombin de Souza, Mireli Trombin de Souza, Matheus Rakes, Renato J Horikoshi, Leonardo L Miraldo, Ramiro L F Ovejero, Geraldo U Berger, Daniel Bernardi","doi":"10.1093/jee/toae200","DOIUrl":"10.1093/jee/toae200","url":null,"abstract":"<p><p>Rachiplusia nu Guenée is a polyphagous species able to develop on several cultivated and non-cultivated host plants. However, basic life history information about this pest on hosts is scarce. In this study, R. nu larvae did not survive on leaves of non-Bt corn, wheat, Bt cotton that expresses proteins Cry1Ac+Cry2Ab2 or on Intacta2 Xtend soybean that expresses the Cry1A.105/Cry2Ab2/Cry1Ac proteins. Rachiplusia nu showed a viable egg-to-adult biological cycle (54%-66.3%) on non-Bt soybean, sunflower, canola, vetch, Persian clover, alfalfa, bean, and forage turnip hosts, similar to larvae raised on the artificial diet. In addition, R. nu was unable to complete larval development on non-Bt cotton, and only 45.2% of R. nu larvae reached the pupal stage when fed leaves of intacta RR2 PRO soybean that expresses the Cry1Ac protein. Larval and pupal mass of surviving insects on Cry1Ac soybean leaves were also lower (larval: 0.104 g; pupal: 0.099 g) in relation to other food sources (larval: 0.165-0.189 g; pupal: 0.173-0.192 g). The total fecundity of R. nu on Cry1Ac soybean leaves was ≈65% lower in relation to other food sources. This fact caused ≈60% the net reproductive rate (Ro) and intrinsic rate of increase (rm) when compared to other food sources. Our findings indicate that the Cry1Ac soybean negatively affects the biological parameters of R. nu. Non-Bt soybean, sunflower, canola, vetch, Persian clover, alfalfa, bean, and forage turnip are viable food sources for the survival and development of R. nu.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"2135-2142"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rameshwor Pudasaini, Cheng Chang, Mu-Hsin Chen, Shu-Mei Dai
{"title":"The I4790K mutation of the ryanodine receptor is responsible for anthranilic diamide resistance in field populations of Plutella xylostella (Lepidoptera: Plutellidae).","authors":"Rameshwor Pudasaini, Cheng Chang, Mu-Hsin Chen, Shu-Mei Dai","doi":"10.1093/jee/toae189","DOIUrl":"10.1093/jee/toae189","url":null,"abstract":"<p><p>Insecticide resistance in Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) is a major constraint on the global production of cruciferous crops. For effective management of insecticide resistance, it is necessary to develop a molecular detection tool for predicting insecticide resistance levels based on the mutation frequency of target sites. In this study, a susceptible strain (SHggt) of P. xylostella was subjected to chlorantraniliprole and tetraniliprole selection under laboratory conditions to obtain the CHLSel and TETSel strains, respectively, to determine their resistance development, cross-resistance and mutation frequencies of the P. xylostella ryanodine receptor (PxRyR). In addition, the tetraniliprole resistance and the mutation frequencies of the PxRyR from 7 field populations were evaluated. Continuous selection over 30 generations resulted in resistance ratios (RRs) of 7,073.2-fold and 6,971.0-fold for the CHLSel and TETSel strains, respectively, and thousandfold increases in cross-resistance to unexposed diamides, e.g., cyantraniliprole and flubendiamide, were observed. For the field populations, three out of seven populations have developed more than thousandfold resistance to tetraniliprole. Among the three investigated target site mutations in PxRyR, only I4790K was detected in both laboratory-selected strains. However, 2 mutations, I4790K and G4946E, were detected in field populations. A positive correlation between RRs and K allele frequencies was observed in the laboratory-selected/relaxed strains and field populations of P. xylostella. These results suggest a possible link between the development of anthranilic diamide resistance and the frequency of the PxRyR I4790K mutation, which can be used to develop effective strategies for diamide resistance management in P. xylostella.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":"2081-2092"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Willem G van Herk, Julien Saguez, Alora Caelen Watson, Regine Gries, Gerhard Gries
{"title":"Nearctic female Agriotes pubescens and Palearctic female A. lineatus (Coleoptera: Elateridae) produce the same sex pheromone.","authors":"Willem G van Herk, Julien Saguez, Alora Caelen Watson, Regine Gries, Gerhard Gries","doi":"10.1093/jee/toae229","DOIUrl":"https://doi.org/10.1093/jee/toae229","url":null,"abstract":"<p><p>In central Canada, surveys for the three invasive (Palearctic) Agriotes species-A. obscurus, A. lineatus, and A. sputator-commonly collect A. pubescens, a North American native (Nearctic) click beetle (Coleoptera: Elateridae) that generally co-occurs with Nearctic A. mancus. Despite the abundance of A. pubescens on farmland, its life history and potential economic impact remain largely unknown. Here, we report the identification and field testing of the A. pubescens sex pheromone. We collected headspace volatiles from a single female beetle on Porapak Q, then extracted the female's pheromone gland, and analyzed aliquots of both Porapak extract and pheromone gland extract by gas chromatographic-electroantennographic detection (GC-EAD) and by GC-mass spectrometry. In GC-EAD recordings of gland extract, two esters-geranyl butanoate and geranyl octanoate-elicited antennal responses from A. pubescens males. In a field experiment in Quebec, traps baited with a 1:1 blend of these esters captured approximately 100× more A. pubescens males than traps baited with a single ester. This is the same trap lure used for capturing A. lineatus. In this experiment, and in a similar one run in British Columbia, heterospecific pheromone components added to conspecific pheromone lures reduced captures of A. mancus, A. sputator, A. lineatus, and A. obscurus by 29%, 96%, 44%, and 71%, respectively. These data indicate that, in North America, lures containing pheromone components of multiple Agriotes congeners may not be optimally attractive to all target species.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}