International journal of drug discovery and pharmacology最新文献

筛选
英文 中文
The Therapeutic Effects of Ligustrazine in Combination with Other Drugs in Cardiovascular Diseases 川芎嗪联合其他药物治疗心血管疾病的疗效观察
International journal of drug discovery and pharmacology Pub Date : 2023-02-10 DOI: 10.53941/ijddp.0201005
Peihua Dong, Yu Huang, Y. Pu
{"title":"The Therapeutic Effects of Ligustrazine in Combination with Other Drugs in Cardiovascular Diseases","authors":"Peihua Dong, Yu Huang, Y. Pu","doi":"10.53941/ijddp.0201005","DOIUrl":"https://doi.org/10.53941/ijddp.0201005","url":null,"abstract":"Review\u0000The Therapeutic Effects of Ligustrazine in Combination with Other Drugs in Cardiovascular Diseases\u0000\u0000Peihua Dong , Yu Huang , and Yujie Pu ,*\u0000\u0000\u0000Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 518057 , China\u0000* Correspondence: yujiepu@cityu.edu.hk\u0000 \u0000 \u0000Received: 29 December 2022\u0000Accepted: 18 January 2023\u0000Published: 10 February 2023\u0000 \u0000\u0000Abstract: Chuanxiong, one of the traditional Chinese medicines (TCM), was first documented in the Tang dynasty to promote blood circulation and remove blood stasis. Ligusticum chuanxiong Hort was shown as the most effective portion of chuanxiong. Later chemical analysis revealed that the main chemical component of ligusticum chuanxiong Hort is tetramethylpyrazine. Since then, numerous explorations have been made to examine the efficiency of tetramethylpyrazine in treating different diseases and understand the underlying mechanisms of its action. Like Chuanxiong, ligustrazine (Chuan Xiong Qin) improved the functions of the circulatory and nervous systems. Ligustrazine (Chuan Xiong Qin) was also used in combination with other medicines to achieve better effects on improving cardiovascular health or alleviating the adverse effects of chemotherapies in both basic and clinical studies. The present review briefly summarizes the existing studies of the combination of ligustrazine (Chuan Xiong Qin) with other medicines in the treatment of cardiovascular diseases (CVDs) and provides valuable insights into the future research direction and better utilization of this drug.","PeriodicalId":94047,"journal":{"name":"International journal of drug discovery and pharmacology","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81945550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent Clinical Successes in Liposomal Nanomedicines 脂质体纳米药物的最新临床成功
International journal of drug discovery and pharmacology Pub Date : 2023-02-03 DOI: 10.53941/ijddp.0201009
Wenjie Gu, G. Andrews, Yiwei Tian
{"title":"Recent Clinical Successes in Liposomal Nanomedicines","authors":"Wenjie Gu, G. Andrews, Yiwei Tian","doi":"10.53941/ijddp.0201009","DOIUrl":"https://doi.org/10.53941/ijddp.0201009","url":null,"abstract":"Review\u0000Recent Clinical Successes in Liposomal Nanomedicines\u0000\u0000Wenjie Gu , Gavin P. Andrews , and Yiwei Tian , *\u0000\u0000\u0000School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.\u0000* Correspondence: y.tian@qub.ac.uk\u0000 \u0000 \u0000Received: 19 December 2022\u0000Accepted: 26 January 2023\u0000Published: 3 February 2023\u0000 \u0000\u0000Abstract: The intrinsic limitations of cancer therapies promoted the development of safer liposomal nanocarriers capable of better distributing the payload away from normal tissues. Since then, liposomal nanocarriers have been considered the primary drug delivery system for many active pharmaceutical ingredients. These systems are now frequently investigated for the treatment of many infectious diseases. Along with the tremendous progress in the anticancer and antifungal liposomal nanomedicines, we have also gradually realised the difficulties associated with the existing liposomal nanocarrier designs. A better understanding of the nanocarrier-bio interactions may provide a new paradigm in liposomal nanocarrier design and better clinical endpoint efficacy. This short review focuses on the progress and benefits of two market-approved liposomal nanomedicines for cancer and fungal treatments.","PeriodicalId":94047,"journal":{"name":"International journal of drug discovery and pharmacology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90898689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
23-Hydroxybetulinic Acid, A Natural Compound, Alleviates DSS-induced Colitis by Regulating NF-κB Signaling 天然化合物羟基白桦酸通过调节NF-κB信号通路减轻dss诱导的结肠炎
International journal of drug discovery and pharmacology Pub Date : 2023-01-11 DOI: 10.53941/ijddp.0201007
Shuangli Xiang, Miaojuan Wang, Xiuping Chen
{"title":"23-Hydroxybetulinic Acid, A Natural Compound, Alleviates DSS-induced Colitis by Regulating NF-κB Signaling","authors":"Shuangli Xiang, Miaojuan Wang, Xiuping Chen","doi":"10.53941/ijddp.0201007","DOIUrl":"https://doi.org/10.53941/ijddp.0201007","url":null,"abstract":"Article\u000023-Hydroxybetulinic Acid, A Natural Compound, Alleviates DSS-induced Colitis by Regulating NF-κB Signaling\u0000\u0000Shuangli Xiang 1, # , Miaojuan Wang 2, # , and Xiuping Chen 2, *\u0000\u0000\u00001 Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China.\u00002 State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.\u0000* Correspondence: xpchen@um.edu.mo, Tel.: +853-88224679, Fax: +853-28841358\u0000# Co-First author.\u0000 \u0000 \u0000Received: 8 November 2022\u0000Accepted: 2 December 2022\u0000Published: 11 January 2023\u0000 \u0000\u0000Abstract: Ulcerative colitis (UC), an inflammatory intestinal disease, is a growing epidemic affecting people worldwide and requires the development of effective therapeutic drugs. In this study, the effect of 23-hydroxybetulinic acid (23-HBA), a compound isolated from the traditional herb Pulsatilla chinensis (Bunge) Regel, on experimental UC was studied. C57BL/6J male mice were administrated with 3% dextran sodium sulfate (DSS) in drinking water to establish the UC model. 23-HBA was orally administrated at either 3.75, 7.5, or 15 mg/kg for 6 days. Mesalazine was used as a positive control. Examination of the body weight, colon length, disease activity index (DAI), histopathology examination, inflammatory cytokines, oxidative stress, and protein expression was performed. The pathological changes were examined with hematoxylin and eosin (H&E) and Aixian blue-glycogen (AB-PAS) staining. In cultured RAW 264.7 cells, the effects of 23-HBA on lipopolysaccharide (LPS)-stimulated cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and oxidative stress were analyzed. Compared with the colitis model, 23-HBA treatment significantly increased the body weight and colon length and decreased the DAI score. Pathological staining showed that 23-HBA mitigated the damage in intestinal structures, the increase in inflammatory cell infiltration, the increase in submucosa edema, and the decrease in goblet cell number. Furthermore, 23-HBA decreased IL-1β, IL-6, and MDA levels in the colon tissues. In addition, 23-HBA inhibited the protein expressions of COX-2, iNOS, and NF-κB p65 both in the colon tissues and in LPS-stimulated RAW 264.7 cells. In conclusion, these results showed that 23-HBA alleviated DSS-induced acute UC in mice and inhibited LPS-stimulated inflammation in RAW 264.7 cells possibly mediated by regulating the NF-κB pathway.","PeriodicalId":94047,"journal":{"name":"International journal of drug discovery and pharmacology","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81265558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Sodium Glucose Cotransporter 2 Inhibitor in Hypertension 葡萄糖共转运蛋白2抑制剂钠在高血压中的作用
International journal of drug discovery and pharmacology Pub Date : 2022-12-21 DOI: 10.53941/ijddp.v1i1.175
Zhitong Zhou, Daowen Wang, Junfang Wu
{"title":"Role of Sodium Glucose Cotransporter 2 Inhibitor in Hypertension","authors":"Zhitong Zhou, Daowen Wang, Junfang Wu","doi":"10.53941/ijddp.v1i1.175","DOIUrl":"https://doi.org/10.53941/ijddp.v1i1.175","url":null,"abstract":"Review\u0000Role of Sodium Glucose Cotransporter 2 Inhibitor in Hypertension\u0000\u0000Zhitong Zhou, Dao Wen Wang, Junfang Wu *\u0000\u0000\u0000Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.\u0000* Correspondence: Junfang.wu@tjh.tjmu.edu.cn\u0000 \u0000 \u0000Received: 17 October 2022\u0000Accepted: 15 November 2022\u0000Published: 21 December 2022\u0000 \u0000\u0000Abstract: Sodium glucose cotransporter 2 inhibitors (SGLT-2i) are a new class of antidiabetic drugs that act by inhibiting the reabsorption of glucose in the proximal renal tubule, which results in lowering the level of blood and urinary glucose. Besides the glucose-lowing effect, some clinical trials found the benefits of SGLT2i in treating heart failure with or without diabetes. In 2021, SGLT2i were recommended by the European Society of Cardiology in treating of heart failure. Compared to heart failure, hypertension is a common cardiovascular disease with an increasing prevalence globally. There is also clinical evidence indicating that SGLT2i can lower blood pressure. Here we focused on addressing the role of SGLT-2i in treating hypertension and its possible mechanism in this review.","PeriodicalId":94047,"journal":{"name":"International journal of drug discovery and pharmacology","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81562045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Nanoparticle-based Drug Delivery System for Post Myocardial Infarction Management 基于纳米颗粒的心肌梗死后药物输送系统
International journal of drug discovery and pharmacology Pub Date : 2022-12-21 DOI: 10.53941/ijddp.v1i1.171
Minxuan Liu, Chiara Ramponi, Xiaoxue Fan, Xinzhuang Zhang, Liang Cao, Zhenzhong Wang, W. Xiao
{"title":"Nanoparticle-based Drug Delivery System for Post Myocardial Infarction Management","authors":"Minxuan Liu, Chiara Ramponi, Xiaoxue Fan, Xinzhuang Zhang, Liang Cao, Zhenzhong Wang, W. Xiao","doi":"10.53941/ijddp.v1i1.171","DOIUrl":"https://doi.org/10.53941/ijddp.v1i1.171","url":null,"abstract":"Review\u0000Nanoparticle-based Drug Delivery System for Post Myocardial Infarction Management\u0000\u0000Minxuan Liu, Chiara Ramponi, Xiaoxue Fan, Xinzhuang Zhang, Liang Cao, Zhenzhong Wang, and Wei Xiao *\u0000\u0000\u0000State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China.\u0000* Correspondence: xw_kanion@163.com\u0000 \u0000 \u0000Received: 15 October 2022\u0000Accepted: 2 November 2022\u0000Published: 21 December 2022\u0000 \u0000\u0000Abstract: Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the world. Myocardial infraction (MI) as one of the most harmful forms of ischaemic heart disease requires rigorous and tempestive approaches which are not met by current clinical interventions. Nanotechnology has developed promising clinical applications for imaging, diagnostic, gene delivery and tissue engineering, which makes this technology a potential candidate for novel therapeutic delivery approach. This review highlights several recent research reports regarding advances in drug delivery using nanoparticle-based (NP) strategies, as well as future challenges and opportunities.","PeriodicalId":94047,"journal":{"name":"International journal of drug discovery and pharmacology","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77250323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Targeting Inflammation to Control Tissue Fibrosis 靶向炎症控制组织纤维化
International journal of drug discovery and pharmacology Pub Date : 2022-12-21 DOI: 10.53941/ijddp.v1i1.206
Weihua Song, Wu Sun, Zilong Wang, K. Teo, C. Cheung, Xiaomeng Wang
{"title":"Targeting Inflammation to Control Tissue Fibrosis","authors":"Weihua Song, Wu Sun, Zilong Wang, K. Teo, C. Cheung, Xiaomeng Wang","doi":"10.53941/ijddp.v1i1.206","DOIUrl":"https://doi.org/10.53941/ijddp.v1i1.206","url":null,"abstract":"Review\u0000Targeting Inflammation to Control Tissue Fibrosis\u0000\u0000Weihua Song 1, Wu Sun 2, Zilong Wang 3, Kelvin Yi Chong Teo 2,4,5, Chui Ming Gemmy Cheung 2,4,5, and Xiaomeng Wang 4,5,6,*\u0000\u0000\u00001 Innoland Biosciences, 6 West Beijing Road, Taicang 215400, Jiangsu, China.\u00002 Singapore National Eye Center, 11 Third Hospital Ave 168751, Singapore.\u00003 Ocean University of China, 5 Yushan Rd, Shinan District, Qingdao 266005, Shandong, China.\u00004 Singapore Eye Research Institute, 20 College Road 169856, Singapore.\u00005 Duke-NUS Graduate Medical School, 20 College Road 169856, Singapore.\u00006 Insitute of Molecular and Cell Biology, 61 Biopolis Dr, Proteos 138673, Singapore.\u0000* Correspondence: xiaomeng.wang@duke-nus.edu.sg\u0000 \u0000 \u0000Received: 17 November 2022\u0000Accepted: 19 November 2022\u0000Published: 21 December 2022\u0000 \u0000\u0000Abstract: Remodeling of the extracellular matrix (ECM) is an essential process in host defense against pathogens and tissue repair following injury. However, aberrant inflammatory responses could disturb ECM homeostasis leading to progressive disruption in tissue architecture and organ function. Fibrosis is the common outcome of a wide range of diseases, especially chronic inflammatory disorders, and represents the leading cause of morbidity and mortality globally. This review provides the current understanding of the pathogenesis of fibrosis, with particular emphasis on the role of inflammation in this process and the translational potential of targeting inflammation as a strategy to control fibrotic progression.","PeriodicalId":94047,"journal":{"name":"International journal of drug discovery and pharmacology","volume":"93 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73290653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The P21-Activated Kinase 1 and 2 As Potential Therapeutic Targets for the Management of Cardiovascular Disease p21活化激酶1和2作为心血管疾病管理的潜在治疗靶点
International journal of drug discovery and pharmacology Pub Date : 2022-12-21 DOI: 10.53941/ijddp.v1i1.179
Honglin Xu, Dingwei Wang, Chiara Ramponi, X. Wang, Hongyuan Zhang
{"title":"The P21-Activated Kinase 1 and 2 As Potential Therapeutic Targets for the Management of Cardiovascular Disease","authors":"Honglin Xu, Dingwei Wang, Chiara Ramponi, X. Wang, Hongyuan Zhang","doi":"10.53941/ijddp.v1i1.179","DOIUrl":"https://doi.org/10.53941/ijddp.v1i1.179","url":null,"abstract":"Review\u0000The P21-Activated Kinase 1 and 2 As Potential Therapeutic Targets for the Management of Cardiovascular Disease\u0000\u0000Honglin Xu, Dingwei Wang, Chiara Ramponi, Xin Wang, and Hongyuan Zhang *\u0000\u0000\u0000Michael Smith building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.\u0000* Correspondence: hongyuan.zhang-3@postgrad.manchester.ac.uk\u0000 \u0000 \u0000Received: 20 October 2022\u0000Accepted: 16 November 2022\u0000Published: 21 December 2022\u0000 \u0000\u0000Abstract: Group I p21-activated kinases (Paks) are members of the serine/threonine protein kinase family. Paks are encoded by three genes (Pak 1‒3) and are involved in the regulation of various biological processes. Pak1 and Pak2 are key members, sharing 91% sequence identity in their kinase domains. Recent studies have shown that Pak1/2 protect the heart from various types of stresses. Activated Pak1/2 participate in the maintenance of cellular homeostasis and metabolism, thus enhancing the adaptation and resilience of cardiomyocytes to stress. The structure, activation and function of Pak1/2 as well as their protective roles against the occurrence of cardiovascular disease are described in this review. The values of Pak1/2 as therapeutic targets are also discussed.","PeriodicalId":94047,"journal":{"name":"International journal of drug discovery and pharmacology","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83307226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Injectable Multifunctional Natural Polymer-Based Hydrogels for the Local Delivery of Therapeutic Agents 用于局部递送治疗剂的可注射多功能天然聚合物水凝胶
International journal of drug discovery and pharmacology Pub Date : 2022-12-21 DOI: 10.53941/ijddp.v1i1.203
Xue Bai, A. Tirella
{"title":"Injectable Multifunctional Natural Polymer-Based Hydrogels for the Local Delivery of Therapeutic Agents","authors":"Xue Bai, A. Tirella","doi":"10.53941/ijddp.v1i1.203","DOIUrl":"https://doi.org/10.53941/ijddp.v1i1.203","url":null,"abstract":"Mini Review\u0000Injectable Multifunctional Natural Polymer-Based Hydrogels for the Local Delivery of Therapeutic Agents\u0000\u0000Xue Bai 1,Annalisa Tirella1,2,*\u0000\u0000\u00001 Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK.\u00002 BIOtech-Center for Biomedical Technologies, Department of Industrial Engineering, University of Trento, Via delle Regole 101, Trento 38123, Italy.\u0000* Correspondence: annalisa.tirella@unitn.it , annalisa.tirella@manchester.ac.uk (Annalisa Tirella).\u0000 \u0000 \u0000Received: 13 November 2022\u0000Accepted: 15 November 2022\u0000Published: 21 December 2022\u0000 \u0000\u0000Abstract:  Hydrogels are water-based polymeric three-dimensional network with advantageous properties for the delivery of bioactive components, ranging from small therapeutic agents to therapeutic cells. Natural-based hydrogels have great potential as delivery vehicles for the local controlled release of therapeutic agents at the target site. Injectable hydrogels are designed to load therapeutic agents by simple mixing within the polymer solutions, as well as use nanoparticles able to respond to specific external conditions, such as temperature and pH. Herein, we present an overview of the properties of natural injectable hydrogels and recent developments for their use to control the local release of therapeutic agents; as well as strategies to crosslink in-situ multifunctional injectable hydrogels that act as therapeutical depot system. The mini review focuses on alginate-based injectable hydrogels as controlled drug delivery systems, presenting advantages and challenges of their application in cancer therapy","PeriodicalId":94047,"journal":{"name":"International journal of drug discovery and pharmacology","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77475607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Cardiac β-Adrenoceptor Signaling: The New Insight on An Old Target in the Therapy of Cardiovascular Disease 心脏β-肾上腺素受体信号:对心血管疾病治疗中一个老靶点的新认识
International journal of drug discovery and pharmacology Pub Date : 2022-12-21 DOI: 10.53941/ijddp.v1i1.177
Ying Song, A. Woo, Yan Zhang, Ruiping Xiao
{"title":"Cardiac β-Adrenoceptor Signaling: The New Insight on An Old Target in the Therapy of Cardiovascular Disease","authors":"Ying Song, A. Woo, Yan Zhang, Ruiping Xiao","doi":"10.53941/ijddp.v1i1.177","DOIUrl":"https://doi.org/10.53941/ijddp.v1i1.177","url":null,"abstract":"Review\u0000Cardiac β-Adrenoceptor Signaling: The New Insight on An Old Target in the Therapy of Cardiovascular Disease\u0000\u0000Ying Song 1, Anthony Yiu-Ho Woo 2,*, Yan Zhang 3,4,*, and Ruiping Xiao 5,6,7,8\u0000\u0000\u00001 Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.\u00002 School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.\u00003 Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.\u00004 Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China.\u00005 State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.\u00006 Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.\u00007 Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.\u00008 PKU-Nanjing Joint Institute of Translational Medicine, Nanjing, 210000, China.\u0000* Correspondence: yiuhowoo@syphu.edu.cn (Anthony Yiu-Ho Woo), Tel.: +86-24-23986375; zhangyan9876@pku.edu.cn (Yan Zhang), Tel.: +86-10-82805945.\u0000 \u0000 \u0000Received: 19 October 2022\u0000Accepted: 28 October 2022\u0000Published: 21 December 2022\u0000 \u0000\u0000Abstract: A variety of G protein-coupled receptors (GPCRs) are involved in the regulation of cardiovascular function. The β-adrenoceptors (β-ARs), with three subtypes, are the dominant receptor species in the heart, in which the β1-AR and the β2-AR are considered functional. Stimulation of the β-ARs produces myocardial inotropy via activation of the Gs-cAMP-PKA signaling cascade. Prolonged stimulation of the β1-AR is cardiac harmful because the stimulated β1-AR couples only to Gs proteins and it mediates a cardiotoxic signal. On the other hand, the β2-AR couples dually to both Gs and Gi proteins and the β2-AR-Gi pathway is antiapoptotic. The activated Gi signal also counteracts the β-AR-Gs-promoted positive inotropic effect. Other key players in cardiac β-AR signaling include Ca2+/calmodulin-dependent protein kinases (CaMKs), GPCR kinases (GRKs), β-arrestins and phosphodiesterases. During heart failure, excessive sympathetic stimulation results in the activation of the cardiotoxic β1-AR-CaMKIIδ pathway and the upregulation of GRK2 and Gi in the heart. GRK2 promotes the desensitization of β-ARs and enhances a β2-AR-mediated Gi signaling. These signal transduction processes accompanying the downregulation of the β1-AR are involved in cardiac dysfunction, maladaptive cardiac remodeling, and the progression of chronic heart failure. β-Blockers are widely used in the treatment of cardiovascular disease. They have established their position as one of the “four pillars of heart failure” thirty years ago. In the present review, we provide an overview of the ","PeriodicalId":94047,"journal":{"name":"International journal of drug discovery and pharmacology","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90613163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Current Progress in Drug Target Identification and Drug Delivery 药物靶点识别与给药研究进展
International journal of drug discovery and pharmacology Pub Date : 2022-12-21 DOI: 10.53941/ijddp.v1i1.214
X. Wang
{"title":"Current Progress in Drug Target Identification and Drug Delivery","authors":"X. Wang","doi":"10.53941/ijddp.v1i1.214","DOIUrl":"https://doi.org/10.53941/ijddp.v1i1.214","url":null,"abstract":"Editorial\u0000Current Progress in Drug Target Identification and Drug Delivery\u0000\u0000Xin Wang\u0000\u0000\u0000Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, M13 9PT Manchester, UK.\u0000* Correspondence: xin.wang@manchester.ac.uk\u0000","PeriodicalId":94047,"journal":{"name":"International journal of drug discovery and pharmacology","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74107210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信