Amin Reza Nikpoor, Mahmoud Mahmoudi, Abbas Shapouri-Moghaddam, Zahra Rezaieyazdi, Samaneh Mollazadeh, Nafiseh Tabasi, Atena Mansouri, Reyhane Modarres Moghadam, Amir Abbas Momtazi, Soran K Najmaldin, Ramiar Kamal Kheder, Seyed-Alireza Esmaeili
{"title":"Curcumin and Berberine Arrest Maturation and Activation of Dendritic Cells Derived from Lupus Erythematosus Patients.","authors":"Amin Reza Nikpoor, Mahmoud Mahmoudi, Abbas Shapouri-Moghaddam, Zahra Rezaieyazdi, Samaneh Mollazadeh, Nafiseh Tabasi, Atena Mansouri, Reyhane Modarres Moghadam, Amir Abbas Momtazi, Soran K Najmaldin, Ramiar Kamal Kheder, Seyed-Alireza Esmaeili","doi":"10.2174/0118761429249908231221080806","DOIUrl":"https://doi.org/10.2174/0118761429249908231221080806","url":null,"abstract":"<p><strong>Background: </strong>Systemic lupus erythematosus (SLE) is a complex autoimmune disease recognized by elevated activity of autoimmune cells, loss of tolerance, and decreased regulatory T cells producing inhibitory cytokines. Despite many efforts, the definitive treatment for lupus has not been fully understood. Curcumin (CUR) and berberine (BBR) have significant immunomodulatory roles and anti-inflammatory properties that have been demonstrated in various studies. This study aimed to investigate the anti-inflammatory properties of CUR and BBR on human monocyte-derived dendritic cells (DCs) with an special focus on the maturation and activation of DCs.</p><p><strong>Methods: </strong>Human monocytes were isolated from the heparinized blood of SLE patients and healthy individuals, which were then exposed to cytokines (IL-4 and GM-CSF) for five days to produce immature DCs. Then, the obtained DCs were characterized by FITC-uptake assay and then cultured in the presence of CUR, BBR, or lipopolysaccharide (LPS) for 48 h. Finally, the maturation of DCs was analyzed by the level of maturation using flow cytometry or real-time PCR methods.</p><p><strong>Results: </strong>The results showed promising anti-inflammatory effects of CUR and BBR in comparison with LPS, supported by a significant reduction of not only co-stimulatory and antigen-presenting factors such as CD80, CD86, CD83, CD1a, CD14, and HLA-DR but also inflammatory cytokines such as IL-12.</p><p><strong>Conclusion: </strong>CUR and BBR could arrest DC maturation and develop a tolerogenic DC phenotype that subsequently promoted the expression of inhibitory cytokines and reduced the secretion of proinflammatory markers.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139572452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Depression-like Behavior Induced by Repeated Administration of Dexamethasone to Lipopolysaccharide-inflamed Mice.","authors":"Fumiya Shibagaki, Naoko Kojima, Akane Furukawa, Noritaka Nakamichi","doi":"10.2174/0118761429275495231215054024","DOIUrl":"https://doi.org/10.2174/0118761429275495231215054024","url":null,"abstract":"<p><strong>Background: </strong>Over the years, animal models of depression have been developed by loading chronic stress, inducing neuroinflammation, or administering drugs that induce depression; however, these results have poor reproducibility. Therefore, it is necessary to develop animal models that exhibit definitive symptoms of depression for studies on potential therapeutics.</p><p><strong>Objective: </strong>This study was aimed at investigating depression-like symptoms and their pathogenesis in lipopolysaccharide (LPS)-inflamed mice treated with dexamethasone (DEX).</p><p><strong>Methods: </strong>Male ICR mice were injected with LPS, followed by injection with DEX a day later and each day for 6 consecutive days. Depression-like behavior, expression of the glial markers glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba1), and the number of the immature neuronal marker doublecortin (DCX)-positive cells were assessed using tail-suspension test (TST), forced swim test (FST), western blot analysis, and immunohistochemical analysis.</p><p><strong>Results: </strong>Mice in the LPS+DEX group had significantly longer immobility time in the TST and FST than did those in the LPS- or DEX-only and control groups on day 7 post-LPS administration. GFAP and Iba1 expression was significantly elevated in the hippocampus of mice in the LPS group than in those of mice in the control group. Moreover, a significantly lower number of DCX-positive cells was observed in the hippocampal dentate gyrus of mice in the LPS+DEX group compared with that in mice in the LPS- or DEX-only and control groups on day 7 after LPS administration.</p><p><strong>Conclusion: </strong>Repeated DEX administration to LPS-inflamed mice may induce definitive depression-like symptoms by decreasing the number of immature neurons in the hippocampal dentate gyrus. This novel mouse model of depression was produced by repeated administration of steroids to inflamed mice.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139572454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}