{"title":"全反式维甲酸增加了BV-2细胞和培养的星形胶质细胞中转谷氨酰胺酶2的表达。","authors":"Katsura Takano-Kawabe, Tatsuhiko Izumo, Tomoki Minamihata Minamihata, Mitsuaki Moriyama","doi":"10.2174/0118761429254388230922112915","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Activation of microglia and astrocytes has been observed in Alzheimer's disease (AD). Transglutaminase 2 (TG2) is reported to be activated in AD and involved in cell proliferation, differentiation, and inflammation. Moreover, amyloid β (Aβ) aggregation is detected as a characteristic pathology in the AD brain, and is known to be a substrate of TG2. All-trans retinoic acid (ATRA) can modify cell proliferation and differentiation, and is reported to have therapeutic effects on AD pathology.</p><p><strong>Objective: </strong>We aimed to assess the effects of ATRA in microglia and astrocytes on TG2 expression and glial functions.</p><p><strong>Methods: </strong>After treatment with ATRA, TG2 expression and TG activity were assayed in both murine microglia BV-2 cells and cultured rat brain astrocytes. Endocytosis activity in BV-2 cells and Aβ aggregation by astrocytes conditioned medium were also assessed.</p><p><strong>Results: </strong>In both BV-2 cells and cultured astrocytes, ATRA increased TG2 expression and TG activity. The increase was blocked by AGN194310, an RA receptor antagonist. ATRA enhanced the endocytosis activity in BV-2 cells, and the addition of AGN194310 reversed it. The addition of cystamine, a competitive TG inhibitor, also reduced ATRA-enhanced endocytosis activity. On the other hand, Aβ aggregation was potentiated by ATRA-treated astrocytes conditioned medium compared to control astrocytes conditioned medium.</p><p><strong>Conclusion: </strong>These results suggest that ATRA increased TG2 expression and TG activity via RA receptor in microglia and astrocytes. ATRA-enhanced TGs might be involved in phagocytosis and Aβ aggregation. Adequate control of TGs expression and function in microglia and astrocytes can be an important factor in AD pathology.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-trans Retinoic Acid Increased Transglutaminase 2 Expressions in BV-2 Cells and Cultured Astrocytes.\",\"authors\":\"Katsura Takano-Kawabe, Tatsuhiko Izumo, Tomoki Minamihata Minamihata, Mitsuaki Moriyama\",\"doi\":\"10.2174/0118761429254388230922112915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Activation of microglia and astrocytes has been observed in Alzheimer's disease (AD). Transglutaminase 2 (TG2) is reported to be activated in AD and involved in cell proliferation, differentiation, and inflammation. Moreover, amyloid β (Aβ) aggregation is detected as a characteristic pathology in the AD brain, and is known to be a substrate of TG2. All-trans retinoic acid (ATRA) can modify cell proliferation and differentiation, and is reported to have therapeutic effects on AD pathology.</p><p><strong>Objective: </strong>We aimed to assess the effects of ATRA in microglia and astrocytes on TG2 expression and glial functions.</p><p><strong>Methods: </strong>After treatment with ATRA, TG2 expression and TG activity were assayed in both murine microglia BV-2 cells and cultured rat brain astrocytes. Endocytosis activity in BV-2 cells and Aβ aggregation by astrocytes conditioned medium were also assessed.</p><p><strong>Results: </strong>In both BV-2 cells and cultured astrocytes, ATRA increased TG2 expression and TG activity. The increase was blocked by AGN194310, an RA receptor antagonist. ATRA enhanced the endocytosis activity in BV-2 cells, and the addition of AGN194310 reversed it. The addition of cystamine, a competitive TG inhibitor, also reduced ATRA-enhanced endocytosis activity. On the other hand, Aβ aggregation was potentiated by ATRA-treated astrocytes conditioned medium compared to control astrocytes conditioned medium.</p><p><strong>Conclusion: </strong>These results suggest that ATRA increased TG2 expression and TG activity via RA receptor in microglia and astrocytes. ATRA-enhanced TGs might be involved in phagocytosis and Aβ aggregation. Adequate control of TGs expression and function in microglia and astrocytes can be an important factor in AD pathology.</p>\",\"PeriodicalId\":93964,\"journal\":{\"name\":\"Current molecular pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0118761429254388230922112915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118761429254388230922112915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
All-trans Retinoic Acid Increased Transglutaminase 2 Expressions in BV-2 Cells and Cultured Astrocytes.
Background: Activation of microglia and astrocytes has been observed in Alzheimer's disease (AD). Transglutaminase 2 (TG2) is reported to be activated in AD and involved in cell proliferation, differentiation, and inflammation. Moreover, amyloid β (Aβ) aggregation is detected as a characteristic pathology in the AD brain, and is known to be a substrate of TG2. All-trans retinoic acid (ATRA) can modify cell proliferation and differentiation, and is reported to have therapeutic effects on AD pathology.
Objective: We aimed to assess the effects of ATRA in microglia and astrocytes on TG2 expression and glial functions.
Methods: After treatment with ATRA, TG2 expression and TG activity were assayed in both murine microglia BV-2 cells and cultured rat brain astrocytes. Endocytosis activity in BV-2 cells and Aβ aggregation by astrocytes conditioned medium were also assessed.
Results: In both BV-2 cells and cultured astrocytes, ATRA increased TG2 expression and TG activity. The increase was blocked by AGN194310, an RA receptor antagonist. ATRA enhanced the endocytosis activity in BV-2 cells, and the addition of AGN194310 reversed it. The addition of cystamine, a competitive TG inhibitor, also reduced ATRA-enhanced endocytosis activity. On the other hand, Aβ aggregation was potentiated by ATRA-treated astrocytes conditioned medium compared to control astrocytes conditioned medium.
Conclusion: These results suggest that ATRA increased TG2 expression and TG activity via RA receptor in microglia and astrocytes. ATRA-enhanced TGs might be involved in phagocytosis and Aβ aggregation. Adequate control of TGs expression and function in microglia and astrocytes can be an important factor in AD pathology.