Current molecular pharmacology最新文献

筛选
英文 中文
The Role of Complement Component 3 (C3) in Psoriasis.
Current molecular pharmacology Pub Date : 2025-03-26 DOI: 10.2174/0118761429361884250318071733
Qiong Cao, Junqin Li, Kaiming Zhang
{"title":"The Role of Complement Component 3 (C3) in Psoriasis.","authors":"Qiong Cao, Junqin Li, Kaiming Zhang","doi":"10.2174/0118761429361884250318071733","DOIUrl":"https://doi.org/10.2174/0118761429361884250318071733","url":null,"abstract":"<p><p>Psoriasis is a chronic inflammatory disease driven by immune dysfunction, with its pathogenesis still not fully understood. This article explores the crucial roles of complement molecules in psoriasis, emphasizing complement C3's pathogenic mechanisms and its potential as a therapeutic target. The complement system's structure and function highlight its significance in immune response and inflammation regulation. This system is activated through the classical, alternative, and lectin pathways, with complement C3, primarily produced by hepatocytes and macrophages, serving as a core component and the most abundant complement in serum. The article analyzes C3's structure and biological functions to reveal its pathogenic roles in psoriasis, detailing its specific mechanisms in immune abnormalities and skin lesions as supported by recent studies. The activation of the complement system leads to C3 convertase formation, cleaving C3 into C3a and C3b. T cells, though expressing lower C3 levels, produce C3a and C3b, regulating vital T cell functions like CD4+ T cell differentiation and survival. The review also summarizes current therapeutic strategies targeting C3, evaluating their potential effectiveness in alleviating psoriasis symptoms. C3aR inhibitors, such as SB290157, can slow disease progression, proposing a novel therapeutic approach for psoriasis. This comprehensive review offers new insights and theoretical foundations for complement C3 as a target for psoriasis treatment, aiming to advance future research and clinical interventions.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of miRNAs in Podocyte Injury in Diabetic Nephropathy: Mechanisms and Clinical Applications.
Current molecular pharmacology Pub Date : 2025-03-26 DOI: 10.2174/0118761429363169250313083148
Shan Hu, Jiafu Yan, Qiong Yuan, Tianjiao Meng, Zhi Cai, Yuanshuai Huang, Yuhan Wang
{"title":"The Role of miRNAs in Podocyte Injury in Diabetic Nephropathy: Mechanisms and Clinical Applications.","authors":"Shan Hu, Jiafu Yan, Qiong Yuan, Tianjiao Meng, Zhi Cai, Yuanshuai Huang, Yuhan Wang","doi":"10.2174/0118761429363169250313083148","DOIUrl":"https://doi.org/10.2174/0118761429363169250313083148","url":null,"abstract":"<p><p>Diabetic kidney disease (DKD) is one of the most frequent complications of diabetes and, if left uncontrolled, can progress to renal failure. In the early stage of DKD, significant pathological changes occur in podocytes, leading to proteinuria. However, the mechanism of pathological changes in podocytes has not been clarified. Existing clinical diagnostic methods tend to overlook these subtle pathophysiological changes in the early stages, leading to missed optimal treatment time. Moreover, existing treatment methods are limited. Emerging evidence strongly suggests that podocyte injury is associated with distinct specific miRNA expression profiles that precede the onset of overt proteinuria and glomerular filtration rate decline. This review explores the role of microRNAs in podocyte damage-related pathways in DKD, such as reactive oxygen species (ROS) production and inflammatory responses. Furthermore, we discuss the potential clinical application of miRNAs as molecular markers and their feasibility as a molecular therapy.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Mitochondrial Targeting Drug SkQ1 Attenuates the Progression of Post- Traumatic Osteoarthritis through Suppression of Mitochondrial Oxidative Stress.
Current molecular pharmacology Pub Date : 2025-03-17 DOI: 10.2174/0118761429383749250312082958
Zhen-Ya Zhi, Peng-Cheng Wang
{"title":"The Mitochondrial Targeting Drug SkQ1 Attenuates the Progression of Post- Traumatic Osteoarthritis through Suppression of Mitochondrial Oxidative Stress.","authors":"Zhen-Ya Zhi, Peng-Cheng Wang","doi":"10.2174/0118761429383749250312082958","DOIUrl":"https://doi.org/10.2174/0118761429383749250312082958","url":null,"abstract":"<p><p>Background Post-traumatic osteoarthritis (PTOA) constitutes a distinct subtype of osteoarthritis (OA). Despite extensive research, no effective pharmacological intervention has been established to prevent or halt the progression of PTOA. Current therapeutic approaches are primarily limited to symptomatic management and pain relief. SkQ1, a novel mitochondria-targeted antioxidant, has emerged as a promising therapeutic agent due to its dual capacity to scavenge excessive intracellular reactive oxygen species (ROS) and modulate inflammatory responses. Objective This study aimed to investigate the therapeutic potential of SkQ1 in the early stages of PTOA and elucidate its underlying molecular mechanisms. Methods Chondrocytes were cultured under varying concentrations of SkQ1 to evaluate its cytotoxicity. Additionally, an in vitro oxidative stress model was established to assess the antioxidant effects of SkQ1 across different concentration levels, from which the optimal concentration for PTOA treatment was determined. The rat PTOA model was established through medial meniscal tear (MMT) surgery, followed by intra-articular administration of SkQ1 postoperatively. The gait characteristics of rats in each group were assessed biweekly following surgery. Outcome measures were evaluated at 2 and 6 weeks postoperatively, including pathological evaluation of knee cartilage, ROS levels, markers of oxidative damage, such as malondialdehyde (MDA) and 8-hydroxy-deoxyguanosine (8-OHdG), mitochondrial membrane potential, mitochondrial DNA copy number, and apoptosis-related cytokines. Results In vitro, lower concentrations of SkQ1 (500 nM) exhibited superior antioxidant efficacy while minimizing cytotoxicity. The results indicated that SkQ1 administration significantly enhanced knee joint functionality and mitigated articular cartilage degeneration in both the acute and subacute phases of PTOA by inhibiting oxidative stress pathways. In a rat model of PTOA, SkQ1 not only alleviated gait abnormalities, but also substantially reduced levels of oxidative stress biomarkers, including ROS, MDA, and 8-OHdG. Furthermore, SkQ1 effectively preserved mitochondrial membrane potential and increased mitochondrial DNA copy number. Mechanistically, SkQ1 inhibited the release of cytochrome C (Cyt-C) and apoptosis-inducing factor (AIF) and downregulated key components of the mitochondria-mediated apoptotic pathway, such as Bax, Bak, cleaved caspase-3, and cleaved caspase-9. Conclusion The findings suggested that SkQ1 exerts its therapeutic effects via multiple mechanisms, including the reduction of ROS accumulation, mitigation of oxidative damage, preservation of mitochondrial function, and inhibition of apoptotic pathways. These diverse actions position SkQ1 as a promising disease-modifying agent for PTOA treatment, potentially offering benefits that extend beyond those provided by current symptomfocused therapies.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upregulation of miR-3130-5p Enhances Hepatocellular Carcinoma Growth by Suppressing Ferredoxin 1 : miR-3130-5p Enhances HCC Growth via Inhibiting FDX1.
Current molecular pharmacology Pub Date : 2025-03-17 DOI: 10.2174/0118761429358008250305070518
Wanwen Xu, Shengbo Liao, Ying Hu, Yinghui Huang, Jie Zhou
{"title":"Upregulation of miR-3130-5p Enhances Hepatocellular Carcinoma Growth by Suppressing Ferredoxin 1 : miR-3130-5p Enhances HCC Growth via Inhibiting FDX1.","authors":"Wanwen Xu, Shengbo Liao, Ying Hu, Yinghui Huang, Jie Zhou","doi":"10.2174/0118761429358008250305070518","DOIUrl":"https://doi.org/10.2174/0118761429358008250305070518","url":null,"abstract":"<p><strong>Background: </strong>Hepatocellular carcinoma [HCC] is a leading cause of cancer-related mortality worldwide, necessitating the exploration of novel therapeutic targets. Although accumulating studies have identified Ferredoxin 1 [FDX1], a key regulator of cuproptosis, as a candidate tumor suppressor and potential therapeutic target, its role and mechanism remain elusive in HCC.</p><p><strong>Methods: </strong>The FDX1 expression was investigated in human HCC tissues and cell lines. Potential microRNAs targeting FDX1 were predicted by bioinformatic analysis and validated using qPCR screening, a dual luciferase reporter assay, MiR-3130-5p and miR-1910-3p mimics and inhibitors, overexpression plasmids, and xenograft nude mouse model. The correlation between miR-3130-5p/FDX1 axis and HCC patient prognosis was analyzed by using Kaplan-Meier survival analysis.</p><p><strong>Results: </strong>We demonstrated that the expression of FDX1 was downregulated in human HCC tissues and cell lines compared to non-cancerous counterparts, and the downregulation of FDX1 was associated with poor overall survival in HCC patients. Subsequent bioinformatic analysis and experimental validations showed that FDX1 expression was reduced by microRNA [miR]-3130-5p mimic while induced by miR-3130-5p inhibitor. Further, miR-3130-5p was upregulated in HCC tissues and cells, correlating with a poor prognosis of HCC patients. Besides, lentivirus-mediated overexpression of miR-3130-5p significantly enhanced HCC growth in xenograft nude mouse models. Mechanistically, it was demonstrated that miR-3130-5p inhibited FDX1 expression via binding to its 3' untranslated region [3' UTR], while overexpression of FDX1 counteracted the promoting effect of miR-3130-5p on HCC cell proliferation.</p><p><strong>Conclusion: </strong>These findings suggest the miR-3130-5p/FDX1 axis as a prognostic biomarker as well as a potential therapeutic target in HCC.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empagliflozin Mitigates High Glucose-Disrupted Mitochondrial Respiratory Function in H9c2 Cardiomyoblasts: A Comparative Study with NHE-1 and ROCK Inhibition.
Current molecular pharmacology Pub Date : 2025-03-03 DOI: 10.2174/0118761429360640250227054103
Cheng-I Cheng, Ming-Huei Chou, I-Ling Shih, Po-Han Chen, Ying-Hsien Kao
{"title":"Empagliflozin Mitigates High Glucose-Disrupted Mitochondrial Respiratory Function in H9c2 Cardiomyoblasts: A Comparative Study with NHE-1 and ROCK Inhibition.","authors":"Cheng-I Cheng, Ming-Huei Chou, I-Ling Shih, Po-Han Chen, Ying-Hsien Kao","doi":"10.2174/0118761429360640250227054103","DOIUrl":"https://doi.org/10.2174/0118761429360640250227054103","url":null,"abstract":"<p><strong>Background: </strong>Hyperglycemia in patients with Diabetes Mellitus (DM) increases the risk of developing cardiomyopathy and heart failure. Elevation of sodium/proton exchanger-1 (NHE-1) expression and activity in cardiomyocytes leads to greater sensitivity to neurohormonal stimulation and cardiomyopathy, whereas inhibition of Sodium-Glucose Cotransporter 2 (SGLT2) clinically benefits DM population in reducing heart failure risk.</p><p><strong>Aims: </strong>This study characterized the expression profiles of NHE-1 and SGLT2 in H9c2 cardiomyoblasts under High Glucose (HG) exposure and examined the effects of Empagliflozin (EMPA), an SGLT2 inhibitor, on the HG-induced cardiomyoblasts deterioration, in comparison with NHE-1 specific inhibitor cariporide and Rho/ROCK inhibitor hydroxy fasudil.</p><p><strong>Methods: </strong>Western blotting and immunofluorescent staining were used to monitor protein expression and subcellular location, respectively. Reactive Oxygen Species (ROS) production and mitochondrial membrane potential were measured by flow cytometry. Kinetic mitochondrial oxygen consumption rate and respiratory function were monitored by a real-time cell metabolic analyzer.</p><p><strong>Results: </strong>HG treatment upregulated SGLT2 and NHE-1 expression and RhoA/ROCK activity in H9c2 cardiomyoblasts. The HG-upregulated NHE-1 is localized in actin-rich cortical cytoplasm, implicating its involvement in cell shape and adhesion alterations. Treatment with NHE-1 and ROCK inhibitors, but not EMPA, significantly attenuated the HG-induced ROS overproduction and mitochondrial membrane potential elevation. However, EMPA treatment restored the HG-suppressed mitochondrial maximal respiration, spare respiratory capacity, and non-mitochondrial oxygen consumption rate.</p><p><strong>Conclusion: </strong>In comparison, Rho/ROCK and NHE-1 inhibitions effectively prevent ROS overproduction, while SGLT2 inhibition rescues the deteriorated mitochondrial respiratory function under diabetogenic conditions. Blockade of SGLT2, NHE-1, or Rho/ROCK activity is useful for the prevention of diabetic cardiomyopathy.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143545112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Immune-Related Molecular Mechanisms Underlying the Comorbidity of Temporal Lobe Epilepsy and Major Depressive Disorder through Integrated Data Set Analysis.
Current molecular pharmacology Pub Date : 2025-02-19 DOI: 10.2174/0118761429380394250217093030
Shi Yan, Zhibin Han, Tianyu Wang, Aowen Wang, Feng Liu, Shengkun Yu, Lin Xu, Hong Shen, Li Liu, Zhiguo Lin, Meng Na
{"title":"Exploring the Immune-Related Molecular Mechanisms Underlying the Comorbidity of Temporal Lobe Epilepsy and Major Depressive Disorder through Integrated Data Set Analysis.","authors":"Shi Yan, Zhibin Han, Tianyu Wang, Aowen Wang, Feng Liu, Shengkun Yu, Lin Xu, Hong Shen, Li Liu, Zhiguo Lin, Meng Na","doi":"10.2174/0118761429380394250217093030","DOIUrl":"https://doi.org/10.2174/0118761429380394250217093030","url":null,"abstract":"<p><strong>Background: </strong>Temporal lobe epilepsy (TLE) and major depressive disorder (MDD) are prevalent and complex neurological disorders that affect individuals globally. Clinical and epidemiological studies indicate a significant comorbidity between TLE and MDD; however, the shared molecular mechanisms underlying this relationship remain unclear. This study aims to explore the common key genes associated with TLE and MDD through a systematic analysis of gene expression profiles, elucidate their underlying molecular pathological mechanisms, and evaluate the potential applications of these genes in diagnostic and therapeutic contexts.</p><p><strong>Methods: </strong>Brain tissue gene expression data for TLE and MDD were obtained from the GEO database. Differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA), functional enrichment, and protein-protein interaction (PPI) network construction were performed to identify shared gene modules. LASSO and random forest (RF) machine learning models were used to select diagnostic candidate genes, validated through ROC curve analysis. Immune infiltration analysis explored the immune involvement of key genes, while single-cell sequencing confirmed gene expression across cell types. Potential therapeutic drugs were identified using a drug database.</p><p><strong>Results: </strong>A total of 372 DEGs were identified as either up- or down-regulated between TLE and MDD, with WGCNA revealing nine shared gene modules. Seven hub genes, including HTR7 and CDHR2, demonstrated strong ROC performance. Immune infiltration analysis revealed changes in immune cell populations linked to key genes, confirmed by single-cell sequencing. Upadacitinib was identified as a potential therapeutic drug targeting these genes.</p><p><strong>Conclusion: </strong>This study identified shared gene expression profiles between TLE and MDD, emphasizing immune pathway-related molecular mechanisms. Immune infiltration analysis and single-cell sequencing underscored the significance of immune regulation in their comorbidity, while drug prediction highlights candidates for precision medicine, establishing a foundation for future research and therapeutic strategies.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143461271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dihydromyricetin Improves Myocardial Functioning by Influencing Autophagy Through SNHG17/Mir-34a/SIDT2 Axis.
Current molecular pharmacology Pub Date : 2025-02-18 DOI: 10.2174/0118761429374180250212114144
Hai Xiao, Yan Xiao, Xueliang Zeng, Huihui Xie, Ziyao Wang, Yu Guo
{"title":"Dihydromyricetin Improves Myocardial Functioning by Influencing Autophagy Through SNHG17/Mir-34a/SIDT2 Axis.","authors":"Hai Xiao, Yan Xiao, Xueliang Zeng, Huihui Xie, Ziyao Wang, Yu Guo","doi":"10.2174/0118761429374180250212114144","DOIUrl":"https://doi.org/10.2174/0118761429374180250212114144","url":null,"abstract":"<p><p>Background Diabetic cardiomyopathy [DCM] is a common and severe complication of Diabetes Mellitus [DM]. Dihydromyricetin [DHM] is a flavonoid compound with potential cardioprotective effects, but the mechanism of DHM in diabetes-induced myocardial damage and autophagy is not fully understood. Objective The objective of this study is to evaluate the effects of DHM on cardiac function and pathological features of DCM, with a particular focus on its impact on the SNHG17/miR-34a/SIDT2 pathway. Methods In vivo experiments: After constructing the DM mice model, it was treated with different doses of DHM. Masson's staining and collagen deposition/fibrosis markers were used to evaluate the effect of DHM on cardiac fibrosis in DM mice. In vitro experiments: 3-[4,5- dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assay and flow cytometry were used to determine the influence of DHM on cell viability and apoptosis, respectively, in high glucose-induced HL-1 cells. ELISA was used to detect levels of cardiac enzyme and inflammationrelated factors, while Western blot analyzed the levels of AMPK/mTOR and autophagy-related proteins. Results DHM significantly improved cardiac function in DM and reduced Renin-angiotensin-aldosterone system markers, alongside decreasing markers of cardiomyocyte damage. DHM mitigated myocardial fibrosis, inflammatory marker levels, and autophagy dysregulation while upregulating lncRNA SNHG17 expression. Mechanistically, DHM acted through the SNHG17/miR-34a/SID1 transmembrane family member 2 [SIDT2] axis, reducing miR-34a expression and restoring SIDT2-mediated autophagy balance, ultimately alleviating apoptosis, inflammation, and fibrosis in diabetic cardiac tissue and high-glucose-induced HL-1 cells. Conclusion DHM improves cardiac function and mitigates DCM progression by targeting the SNHG17/miR-34a/SIDT2 regulatory axis, thereby reducing inflammation, fibrosis, and autophagy dysregulation. These findings provide mechanistic insights into DHM's cardioprotective effects, supporting its potential as a therapeutic agent for DCM.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143461269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two GnRH-mitoxantrone Conjugates, Con-3 and Con-7, Target Endometrial Cancer Cells.
Current molecular pharmacology Pub Date : 2025-02-03 DOI: 10.2174/0118761429343090250121052955
Christos Markatos, Georgia Biniari, Vlasios Karageorgos, Oleg G Chepurny, Maria Venihaki, George G Holz, Theodore Tselios, George Liapakis
{"title":"Two GnRH-mitoxantrone Conjugates, Con-3 and Con-7, Target Endometrial Cancer Cells.","authors":"Christos Markatos, Georgia Biniari, Vlasios Karageorgos, Oleg G Chepurny, Maria Venihaki, George G Holz, Theodore Tselios, George Liapakis","doi":"10.2174/0118761429343090250121052955","DOIUrl":"https://doi.org/10.2174/0118761429343090250121052955","url":null,"abstract":"<p><strong>Introduction: </strong>Endometrial cancer is one of the most common gynecological malignancies. Endometrial cancer cells express the gonadotropin-releasing hormone (GnRH) and its receptor (GnRH-R). Among the various therapeutic approaches for the treatment of endometrial cancer is the use of GnRH conjugates, such as the AN-152, created by linking the [D-Lys6] GnRH with the cytotoxic doxorubicin through an ester bond. An undesirable property of these conjugates is their vulnerability to plasma carboxylesterases, which cleave the ester bond to release doxorubicin before reaching the cancer cells.</p><p><strong>Methods: </strong>To overcome this problem, we recently developed the Con-3 and Con-7, which are GnRH analogs conjugated through a disulfide bond with the cytotoxic mitoxantrone. In this study, we determined the cytotoxic properties of the Con-3 and Con-7 on the Ishikawa endometrial cancer cells, assuming that their interaction with the GnRH-R of cells exposes the conjugated mitoxantrone to the cellular thioredoxin. The cellular thioredoxin reduces the disulfide bond of Con-3 & Con-7 to release mitoxantrone, which accumulates in the cancer cells and exerts its cytotoxic actions.</p><p><strong>Results: </strong>Indeed, treatment of Ishikawa cells with Con-3, Con-7, or the free unconjugated mitoxantrone increased their apoptosis and decreased their proliferation in a dose- and time-dependent manner, displaying half-maximal inhibitory concentrations (IC50) of 0.64 - 1.15 μM. In specific, the IC50 values on days 2, 3, and 4 were 1.45, 0.64, and 0.83 μΜ, respectively, for Con-3, 0.91, 0.82 μΜ, and 1.00 μΜ, respectively for Con-7 and 1.15, 0.98, 0.78 μM, respectively for mitoxantrone.</p><p><strong>Conclusion: </strong>In contrast, the free, mitoxantrone-unconjugated peptides did not affect the proliferation of Ishikawa cells. The Con-3 and Con-7 could put the basis for the development of a new class of anticancer drugs for endometrial cancer, which will act as \"prodrugs\" that deliver the cytotoxic mitoxantrone in a GnRH-R-specific manner.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143124274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Involvement of the NEAT1-1/miR-873-5p/GalNAcT-I Axis in the Development of Neuroblastoma.
Current molecular pharmacology Pub Date : 2025-01-27 DOI: 10.2174/0118761429330889250115105915
Zhigang Hu, Huiming Wang, Juan Wang, Yanbin Fang, Chi Sun, Xiaofeng Yang, Weili Xu
{"title":"The Involvement of the NEAT1-1/miR-873-5p/GalNAcT-I Axis in the Development of Neuroblastoma.","authors":"Zhigang Hu, Huiming Wang, Juan Wang, Yanbin Fang, Chi Sun, Xiaofeng Yang, Weili Xu","doi":"10.2174/0118761429330889250115105915","DOIUrl":"https://doi.org/10.2174/0118761429330889250115105915","url":null,"abstract":"<p><strong>Background: </strong>The most prevalent extracranial solid tumor in childhood is neuroblastoma (NB), which arises from undifferentiated neural crest cells. However, the prognosis of this condition remains unfavorable, and the underlying mechanisms of its origin are still elusive. Therefore, this study aimed to investigate the specific mechanism underlying NEAT1-1 in NB.</p><p><strong>Methods: </strong>In this study, the expressions of NEAT1-1, miR-873-5p, and GalNAcT-I were analyzed by real-time quantitative polymerase chain reaction (qRTPCR) and Western blot (WB). Then, CCK-8 assays were conducted to evaluate the proliferation of NB cells. The Transwell assay was then performed to evaluate the invasion and migration of NB cells. Further, flow cytometry was utilized for the detection of cell apoptosis. Furthermore, the luciferase reporter gene assay was carried out to investigate the relationship between NEAT1-1 and miR-873-5p, as well as between miR-873-5p and GalNAcT-I. In contrast, an RNA-pull-down assay was conducted to confirm the regulatory relationship between NEAT1-1 and miR-873-5p. The effect of NEAT1-1 on tumor growth in vivo was detected in the BALB/c nude mice model.</p><p><strong>Results: </strong>The qRT-PCR analysis revealed a significantly upregulated expression of NEAT1-1 in NB tumors compared to adjacent non-tumor tissue specimens. Suppression of NEAT1-1 resulted in the inhibition of tumor characteristics and induction of apoptosis in NB cells through the targeted regulation of miR-873-5p. Moreover, NEAT1-1 exerted its regulatory effect on GalNAcT-I protein levels by acting as a sponge for miR-873-5p in NB cells. Importantly, the downregulation of NEAT1-1 effectively suppressed tumor growth in vivo.</p><p><strong>Conclusion: </strong>Collectively, our findings suggest that the down-regulation of NEAT1-1 exerts a suppressive effect on NB progression by modulating the miR-873-5p/GalNAcT-I pathway, thereby providing novel insights into elucidating the underlying mechanisms of NB.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thymol and Carvacrol as Potential Tocolytic and Anti-inflammatory Agents in Pregnant Rat Uterus. 百里酚和香芹酚是妊娠大鼠子宫中潜在的催产剂和抗炎剂
Current molecular pharmacology Pub Date : 2025-01-09 DOI: 10.2174/0118761429342128241231163610
Victor Manuel Muñoz-Pérez, Aurora Pérez-Sánchez, Andrés Salas-Casas A, Mario I Ortíz
{"title":"Thymol and Carvacrol as Potential Tocolytic and Anti-inflammatory Agents in Pregnant Rat Uterus.","authors":"Victor Manuel Muñoz-Pérez, Aurora Pérez-Sánchez, Andrés Salas-Casas A, Mario I Ortíz","doi":"10.2174/0118761429342128241231163610","DOIUrl":"https://doi.org/10.2174/0118761429342128241231163610","url":null,"abstract":"<p><strong>Introduction: </strong>This work aimed to evaluate the anti-inflammatory and myorelaxant effect of thymol (TM) and carvacrol (CAR) in the pregnant rat uterus. Both compounds exhibit considerable antimicrobial, antispasmodic, and anti-inflammatory effects and due to these properties, they were studied in this in vitro model of premature birth induced by infection.</p><p><strong>Method: </strong>All uterine tissues were studied in uterine contraction tests to determine the inhibitory effect of TM, CAR (10, 56, 100, 150, and 230 μM), and nifedipine (a calcium channel antagonist) on phasic and tonic contraction induced by electro- and pharmacomechanical stimuli. The quantitative determination of cyclic adenosine monophosphate (cAMP) induced by TM and CAR in the uterine lysate was carried out by ELISA. For the determination of the anti-inflammatory effect of TM, the pro-inflammatory cytokine, interleukin (IL)-1β, in uterine samples stimulated with lipopolysaccharide (LPS) was measured. Forskolin (FSK) was used as a positive control to evaluate the cAMP and cytokine levels. TM, CAR, and nifedipine inhibited the uterine contractions at the highest concentration level, however, nifedipine was the most equipotent (p<0.05). In addition, TM and CAR did not increase the intracellular cAMP production in comparison with FSK (p<0.05). However, both compounds were able to decrease the LPS-induced production in a concentration-dependent manner that was considered statistically significant (p>0.05).</p><p><strong>Results: </strong>Finally, both the anti-inflammatory and uterine relaxing effects induced by TM and CAR were neither associated with the increase in cAMP levels nor with the production of IL-1β in pregnant rat uterine samples. Therefore, TM and CAR can be considered as alternative adjuvants for the treatment of infection-induced preterm labor. Before the in vitro experiments, an in-silico analysis was conducted using the Expaisy online server to evaluate the biological effects of thymol on uterine contraction.</p><p><strong>Conclusion: </strong>It is crucial to know the interaction and identification of genes encoding the Voltage-dependent L-type calcium channel subunit alpha-1C proteins, because of the functional relationship it may have in the inhibition of the uterine contraction. These properties place TM as a potentially safe and effective adjuvant agent in cases of preterm birth, an area of pharmacological treatment that requires urgent improvement.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信