Khaoula Balgouthi, Manaf AlMatar, Hamza Saghrouchni, Osman Albarri, Işıl Var
{"title":"Mutations in Rv0678, Rv2535c, and Rv1979c Confer Resistance to Bedaquiline in Clinical Isolates of Mycobacterium Tuberculosis.","authors":"Khaoula Balgouthi, Manaf AlMatar, Hamza Saghrouchni, Osman Albarri, Işıl Var","doi":"10.2174/0118761429314641240815080447","DOIUrl":"https://doi.org/10.2174/0118761429314641240815080447","url":null,"abstract":"<p><strong>Introduction: </strong>Reduced bedaquiline (BDQ) sensitivity to antimycobacterial drugs has been linked to mutations in the Rv0678, pepQ, and Rv1979c genes of Mycobacterium tuberculosis (MTB). Resistance-causing mutations in MTB strains under treatment may have an impact on novel BDQ-based medication regimens intended to reduce treatment time. Due to this, we investigated the genetic basis of BDQ resistance in Turkish TB patients with MTB clinical isolates. Furthermore, mutations in the genes linked to efflux pumps were examined as a backup resistance mechanism.</p><p><strong>Methods: </strong>We scrutinized 100 MTB clinical isolates from TB patients using convenience sampling. Eighty MDR and twenty pan-drug susceptible MTB strains were among these isolates. Sequencing was performed on all strains, and genomic analyses were performed to find mutations in BDQ resistance-associated genes, including Rv0678 and pepQ(Rv2535c), which correspond to a putative Xaa-Pro aminopeptidase, and Rv1979c. Of the 74 isolates with PepQ (Rv2535c) mutations, four isolates (2.96%) exhibited MGIT-BDQ susceptibility.</p><p><strong>Results: </strong>Twenty-one (19.11%) of the ninety-one isolates carrying mutations, including Rv1979c, were MGIT-BDQ-sensitive. Nonetheless, out of the 39 isolates with Rv0678 mutations, four (2.96%) were sensitive to MGIT-BDQ. It was found that resistance-associated variants (RAVs) in Rv0678, pepQ, and Rv1979c are often linked to BDQ resistance.</p><p><strong>Conclusion: </strong>In order to include variations in efflux pump genes in genome-based diagnostics for drug-resistant MTB, further evidence about their involvement in resistance is needed.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bruno Sensi, Roberta Angelico, Luca Toti, Luigi Conte, Alessandro Coppola, Giuseppe Tisone, Tommaso Maria Manzia
{"title":"Mechanism, Potential, and Concerns of Immunotherapy for Hepatocellular Carcinoma and Liver Transplantation.","authors":"Bruno Sensi, Roberta Angelico, Luca Toti, Luigi Conte, Alessandro Coppola, Giuseppe Tisone, Tommaso Maria Manzia","doi":"10.2174/0118761429310703240823045808","DOIUrl":"https://doi.org/10.2174/0118761429310703240823045808","url":null,"abstract":"<p><p>In the last decade, immunotherapy (IT) has revolutionized oncology and found indications in many cancers, including hepatocellular carcinoma (HCC). In HCC, IT has become the leading systemic therapy for advanced diseases. At the same time, it carries the promise of being a valuable therapy in other settings, including intermediate-stage and unresectable disease, as a downstaging or conversion modality. More controversial is the role of IT in relationship to liver transplantation (LT): on one side, it could be a helpful tool to control or downstage HCC before LT or to treat tumor recurrence after LT, while on the other, it carries the risk of graft rejection and graft loss. This review aims to cover these concerns in depth and unravel the current literature.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Paeoniflorin Alleviates Anxiety and Visceral Hypersensitivity via HPA Axis and BDNF/TrkB/PLCγ1 Pathway in Maternal Separation-induced IBS-like Rats.","authors":"Ruifeng Liang, Wenjing Ge, Xianmei Song, Huisen Wang, Weifeng Cui, Xuexia Zhang, Zheng Wei, Gengsheng Li","doi":"10.2174/0118761429280572240311060851","DOIUrl":"https://doi.org/10.2174/0118761429280572240311060851","url":null,"abstract":"<p><strong>Background: </strong>Irritable Bowel Syndrome (IBS) is a prevalent gastrointestinal disorder that significantly diminishes the quality of life for affected individuals. The pathophysiology of IBS remains poorly understood, and available therapeutic options for IBS are limited. The crucial roles of brain-gut interaction, which is mediated by the Hypothalamic-Pituitary-Adrenocortical (HPA) axis and the autonomic nervous system in IBS, have attracted increasing attention.</p><p><strong>Objective: </strong>The objective of this study was to examine the impact of paeoniflorin (PF) on anxiety and visceral hypersensitivity in maternal separation-induced IBS-like rats.</p><p><strong>Methods: </strong>The IBS-like rat model was established through the implementation of Maternal Separation (MS) and subsequently subjected to various doses of PF administered via oral gavage for 14 days. Anxiety-like behavior was evaluated using the Open Field Test (OFT) and Elevated Plus Maze (EPM) test. The assessment of visceral sensitivity involved the utilization of the Abdominal Withdrawal Reflex (AWR) score and electromyographic (EMG) responses of the external oblique muscle in response to colorectal distention. The levels of adrenocorticotropic hormone (ACTH), corticosterone (CORT), and corticotrophin-releasing hormone (CRH) were examined by ELISA. Quantitative real-time PCR (qRT-PCR) and immunofluorescence were employed to detect the expressions of CRH receptors 1 (CRHR1) and 2 (CRHR2). Glucocorticoid receptors (GR), mineralocorticoid receptor (MR), brain-derived neurotrophic factor (BDNF), tyrosine receptor kinase B (TrkB), and phospholipase C γ1 (PLCγ1) were examined by Western blot.</p><p><strong>Results and discussion: </strong>The results showed that MS induced anxiety-like behavior and visceral hypersensitivity, while PF treatment attenuated these changes. Furthermore, the HPA axis hyperactivity in MS rats was attenuated by PF treatment, indicated by reduced serum ACTH, CORT, and CRH levels and recovered hippocampal CRHR1 and GR expressions. In addition, PF inhibited BDNF/TrkB signaling by downregulating the protein levels of BDNF, TrkB, and phospho-PLCγ1 in the colon.</p><p><strong>Conclusion: </strong>These findings suggest that PF alleviated anxiety and visceral hypersensitivity in MS-induced IBS-like rats, which may be the modulation of HPA axis activity and BDNF/TrkB/PLCγ1 signaling pathway.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"siRNA Targeting ECE-1 Partially Reverses Pulmonary Arterial Hypertensionassociated Damage in a Monocrotaline Model.","authors":"Citlali Margarita Blancas-Napoles, Sandra Edith Cabrera-Becerra, Vivany Maydel Sierra-Sánchez, Sergio Adrian Ocampo-Ortega, Vanessa Giselle Garcia-Rubio, Rodrigo Romero-Nava, Fengyang Huang, Enrique Hong, Asdrúbal Aguilera-Méndez, Santiago Villafaña","doi":"10.2174/0118761429283384240226074921","DOIUrl":"https://doi.org/10.2174/0118761429283384240226074921","url":null,"abstract":"<p><strong>Aims: </strong>The aim of this study was to develop a possible treatment for pulmonary arterial hypertension.</p><p><strong>Background: </strong>Pulmonary arterial hypertension (PAH) is a rare disease characterised by a pulmonary arterial pressure greater than 20 mmHg. One of the factors that contribute to PAH is an increase in the production of endothelin-1, a polypeptide that increases vascular resistance in the pulmonary arteries, leading to increased pulmonary arterial pressure and right ventricular hypertrophy.</p><p><strong>Objective: </strong>The objective of this study was to design, synthesize, and evaluate two siRNAs directed against endothelin-1 in a rat model of PAH induced with monocrotaline.</p><p><strong>Methods: </strong>Wistar rats were administered monocrotaline (60 mg/kg) to induce a PAH model. Following two weeks of PAH evolution, the siRNAs were administered, and after two weeks, right ventricular hypertrophy was evaluated using the RV/LV+S ratio, blood pressure, weight, and relative expression of ECE-1 (Endothelin-converting enzyme-1) mRNA (messenger RNA) by RT-PCR (real-time PCR).</p><p><strong>Results: </strong>The monocrotaline group showed an increase in the hypertrophy index and in ECE-1 mRNA, as well as a significant decrease in weight compared to the control group, while in the monocrotaline + siRNA group, a significant decrease was observed in the relative expression of ECE-1 mRNA, as well as in right ventricular hypertrophy.</p><p><strong>Conclusions: </strong>Based on the above information, we conclude that the administration of siRNAs directed to ECE-1 decreases the damage associated with PAH.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140095392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Promising Breakthrough: The Potential of VORASIDENIB in the Treatment of Low-grade Glioma.","authors":"Alice Bombino, Marcello Magnani, Alfredo Conti","doi":"10.2174/0118761429290327240222061812","DOIUrl":"https://doi.org/10.2174/0118761429290327240222061812","url":null,"abstract":"<p><strong>Introduction: </strong>Gliomas are common malignant brain tumors characterized by diffuse brain infiltration. World Health Organization grade II and grade III diffuse gliomas are considered lower-grade gliomas (LGGs) and have isocitrate dehydrogenase (IDH) mutations. LGGs are challenging due to their infiltrative nature, making them capable of progressing into higher-grade malignancies. Vorasidenib is a novel therapeutic agent targeting mutant IDH1/2, sparking interest in the field.</p><p><strong>Mechanism of action: </strong>Vorasidenib inhibits mutant IDH1/2 through a unique mechanism, reducing the production of the oncometabolite 2-hydroxyglutarate (2-HG). This alteration affects key enzymes and DNA methylation, impacting tumor growth and invasion. Preclinical Evidence: Preclinical studies show vorasidenib's efficacy in inhibiting mutant IDH1/2 and 2-HG production in glioma models. It suppresses tumor growth, making it a potential treatment option.</p><p><strong>Clinical evidence: </strong>Early clinical trials demonstrate vorasidenib's clinical activity in non-enhancing gliomas. It reduces 2-hydroxyglutarate levels and tumor cell proliferation, with an objective response rate and prolonged progression-free survival. The drug's safety profile is favorable. Challenges and Future Directions: Challenges include identifying predictive biomarkers and optimizing sequencing or combinations with existing therapies. Further research is needed to establish long-term effectiveness, evaluate side effects, and explore combinations with immunotherapy.</p><p><strong>Conclusion: </strong>orasidenib significantly advances LGG treatment, targeting a prevalent mutation and slowing tumor growth. Promising preclinical and clinical evidence and manageable side effects suggest its potential impact on LGG management. However, more research, including large trials, is needed to confirm its efficacy and role in treatment.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mei Li, Jiaoxiu Fan, Min Hu, Junyu Xu, Ziyue He, Jun Zeng
{"title":"Quercetin Enhances 5-fluorouracil Sensitivity by Regulating the Autophagic Flux and Inducing Drp-1 Mediated Mitochondrial Fragmentation in Colorectal Cancer Cells.","authors":"Mei Li, Jiaoxiu Fan, Min Hu, Junyu Xu, Ziyue He, Jun Zeng","doi":"10.2174/0118761429283717231222104730","DOIUrl":"https://doi.org/10.2174/0118761429283717231222104730","url":null,"abstract":"<p><strong>Background: </strong>While chemotherapy treatment demonstrates its initial effectiveness in eliminating the majority of the tumor cell population, nevertheless, most patients relapse and eventually succumb to the disease upon its recurrence. One promising approach is to explore novel, effective chemotherapeutic adjuvants to enhance the sensitivity of cancer cells to conventional chemotherapeutic agents. In the present study, we explored the effect of quercetin on the sensitivity of colorectal cancer (CRC) cells to conventional chemotherapeutic agent 5-fluorouracil (5-FU) and the molecular mechanisms.</p><p><strong>Methods: </strong>MTT assay, colony formation assay and Hoechst staining were performed to investigate the growth inhibition effect of quercetin alone or combined with 5-FU. The expression levels of apoptosis- and autophagy-related proteins were assessed by western blotting. Intracellular ROS was detected using DCFH-DA. The change in the mitochondrial membrane potential was measured by a JC-1 probe. The effect of quercetin on mitochondrial morphology was examined using a mitochondrial-specific fluorescence probe, Mito-Tracker red.</p><p><strong>Results: </strong>The results demonstrated quercetin-induced apoptosis and autophagy, as well as imbalanced ROS, decreased mitochondrial membrane potential, and Drp-1-mediated mitochondrial fission in CRC cells. Autophagy blockage with autophagy inhibitor chloroquine (CQ) enhanced quercetininduced cytotoxicity, indicating that quercetin-induced cytoprotective autophagy. Meanwhile, quercetin enhanced the sensitivity of CRC cells to 5- FU via the induction of mitochondrial fragmentation, which could be further enhanced when the quercetin-induced protective autophagy was blocked by CQ.</p><p><strong>Conclusion: </strong>Our findings suggested that quercetin could induce protective autophagy and Drp-1-mediated mitochondrial fragmentation and enhance the sensitivity of CRC cells to conventional agent 5-FU, which not only suggests that quercetin may act as a chemotherapeutic adjuvant but also implies that the regulation of autophagic flux may be a potential therapeutic strategy for colorectal cancer.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ginsenoside Compound K Reduces Psoriasis-related Inflammation by Activation of the Glucocorticoid Receptor in Keratinocytes.","authors":"Wu Wang, Xiujin Xu, Mei Yang, Mengya Jiang, Dandan Wang, Caihong Tang, Wei Wei, Jingyu Chen","doi":"10.2174/0118761429254358231120135400","DOIUrl":"10.2174/0118761429254358231120135400","url":null,"abstract":"<p><strong>Aim: </strong>To investigate the effects and mechanism of Ginsenoside Compound K (GCK) on psoriasis, focusing on the glucocorticoid receptor (GR) in keratinocytes.</p><p><strong>Methods: </strong>An imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model was generated to evaluate the anti-inflammatory effect of GCK. Hematoxylin and eosin (H&E) staining was used to assess skin pathological changes. Protein expression of K17 and p-p65 in mice skin was assayed by immunohistochemical. Protein expression and phosphorylation of p65 IκB were assayed by Western blot. Protein expression of K1, K6, K10, K16, K17, and GR were assayed by Western blot and immunofluorescence. Enzyme-linked immunosorbent assay (ELISA) was used to determine cytokine levels of TNF-α, IL-6, CXCL-8, and ICAM-1. Real-time polymerase chain reaction (RT-PCR) was used to quantify TNF-α, IL-6, IL-8, and ICAM-1 mRNA expression. Cell viability was determined by Cell Counting Kit-8(CCK-8) assay. A high-content cell-imaging system was used to assay cell proliferation. Nuclear translocation of p65 and GR was assayed by imaging flow cytometry and immunofluorescence microscopy. Small interfering RNA was used to confirm the role of GR in the anti-inflammatory and immunoregulatory effect of GCK in normal human epidermal keratinecytes (NHEKs).</p><p><strong>Results: </strong>GCK reduced the psoriasis area, severity index, and epidermal thickening in IMQ-induced mice. GCK significantly attenuated the mRNA levels of IL-6, IL-8, TNF-α, and ICAM-1 and reduced epidermal hyperproliferation in the skin of IMQ-induced mice. GCK inhibited in vitro activation of NF-κB, leading to attenuated release of inflammatory mediators (IL-6, IL-8, TNF-α, and ICAM-1) and suppression of NHEK hyperproliferation and abnormal differentiation. These inhibitory effects of GCK were diminished by GR silencing in NHEKs.</p><p><strong>Conclusion: </strong>GCK suppressed psoriasis-related inflammation by suppressing keratinocyte activation, which may be related to promoting GR nuclear translocation and inhibiting NF-κB activation. In summary, GCK appears to be a GR activator and a promising therapeutic candidate for antipsoriatic agents.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139934751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amin Reza Nikpoor, Mahmoud Mahmoudi, Abbas Shapouri-Moghaddam, Zahra Rezaieyazdi, Samaneh Mollazadeh, Nafiseh Tabasi, Atena Mansouri, Reyhane Modarres Moghadam, Amir Abbas Momtazi, Soran K Najmaldin, Ramiar Kamal Kheder, Seyed-Alireza Esmaeili
{"title":"Curcumin and Berberine Arrest Maturation and Activation of Dendritic Cells Derived from Lupus Erythematosus Patients.","authors":"Amin Reza Nikpoor, Mahmoud Mahmoudi, Abbas Shapouri-Moghaddam, Zahra Rezaieyazdi, Samaneh Mollazadeh, Nafiseh Tabasi, Atena Mansouri, Reyhane Modarres Moghadam, Amir Abbas Momtazi, Soran K Najmaldin, Ramiar Kamal Kheder, Seyed-Alireza Esmaeili","doi":"10.2174/0118761429249908231221080806","DOIUrl":"https://doi.org/10.2174/0118761429249908231221080806","url":null,"abstract":"<p><strong>Background: </strong>Systemic lupus erythematosus (SLE) is a complex autoimmune disease recognized by elevated activity of autoimmune cells, loss of tolerance, and decreased regulatory T cells producing inhibitory cytokines. Despite many efforts, the definitive treatment for lupus has not been fully understood. Curcumin (CUR) and berberine (BBR) have significant immunomodulatory roles and anti-inflammatory properties that have been demonstrated in various studies. This study aimed to investigate the anti-inflammatory properties of CUR and BBR on human monocyte-derived dendritic cells (DCs) with an special focus on the maturation and activation of DCs.</p><p><strong>Methods: </strong>Human monocytes were isolated from the heparinized blood of SLE patients and healthy individuals, which were then exposed to cytokines (IL-4 and GM-CSF) for five days to produce immature DCs. Then, the obtained DCs were characterized by FITC-uptake assay and then cultured in the presence of CUR, BBR, or lipopolysaccharide (LPS) for 48 h. Finally, the maturation of DCs was analyzed by the level of maturation using flow cytometry or real-time PCR methods.</p><p><strong>Results: </strong>The results showed promising anti-inflammatory effects of CUR and BBR in comparison with LPS, supported by a significant reduction of not only co-stimulatory and antigen-presenting factors such as CD80, CD86, CD83, CD1a, CD14, and HLA-DR but also inflammatory cytokines such as IL-12.</p><p><strong>Conclusion: </strong>CUR and BBR could arrest DC maturation and develop a tolerogenic DC phenotype that subsequently promoted the expression of inhibitory cytokines and reduced the secretion of proinflammatory markers.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139572452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Depression-like Behavior Induced by Repeated Administration of Dexamethasone to Lipopolysaccharide-inflamed Mice.","authors":"Fumiya Shibagaki, Naoko Kojima, Akane Furukawa, Noritaka Nakamichi","doi":"10.2174/0118761429275495231215054024","DOIUrl":"https://doi.org/10.2174/0118761429275495231215054024","url":null,"abstract":"<p><strong>Background: </strong>Over the years, animal models of depression have been developed by loading chronic stress, inducing neuroinflammation, or administering drugs that induce depression; however, these results have poor reproducibility. Therefore, it is necessary to develop animal models that exhibit definitive symptoms of depression for studies on potential therapeutics.</p><p><strong>Objective: </strong>This study was aimed at investigating depression-like symptoms and their pathogenesis in lipopolysaccharide (LPS)-inflamed mice treated with dexamethasone (DEX).</p><p><strong>Methods: </strong>Male ICR mice were injected with LPS, followed by injection with DEX a day later and each day for 6 consecutive days. Depression-like behavior, expression of the glial markers glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba1), and the number of the immature neuronal marker doublecortin (DCX)-positive cells were assessed using tail-suspension test (TST), forced swim test (FST), western blot analysis, and immunohistochemical analysis.</p><p><strong>Results: </strong>Mice in the LPS+DEX group had significantly longer immobility time in the TST and FST than did those in the LPS- or DEX-only and control groups on day 7 post-LPS administration. GFAP and Iba1 expression was significantly elevated in the hippocampus of mice in the LPS group than in those of mice in the control group. Moreover, a significantly lower number of DCX-positive cells was observed in the hippocampal dentate gyrus of mice in the LPS+DEX group compared with that in mice in the LPS- or DEX-only and control groups on day 7 after LPS administration.</p><p><strong>Conclusion: </strong>Repeated DEX administration to LPS-inflamed mice may induce definitive depression-like symptoms by decreasing the number of immature neurons in the hippocampal dentate gyrus. This novel mouse model of depression was produced by repeated administration of steroids to inflamed mice.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139572454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}