All-trans Retinoic Acid Increased Transglutaminase 2 Expressions in BV-2 Cells and Cultured Astrocytes.

Katsura Takano-Kawabe, Tatsuhiko Izumo, Tomoki Minamihata Minamihata, Mitsuaki Moriyama
{"title":"All-trans Retinoic Acid Increased Transglutaminase 2 Expressions in BV-2 Cells and Cultured Astrocytes.","authors":"Katsura Takano-Kawabe,&nbsp;Tatsuhiko Izumo,&nbsp;Tomoki Minamihata Minamihata,&nbsp;Mitsuaki Moriyama","doi":"10.2174/0118761429254388230922112915","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Activation of microglia and astrocytes has been observed in Alzheimer's disease (AD). Transglutaminase 2 (TG2) is reported to be activated in AD and involved in cell proliferation, differentiation, and inflammation. Moreover, amyloid β (Aβ) aggregation is detected as a characteristic pathology in the AD brain, and is known to be a substrate of TG2. All-trans retinoic acid (ATRA) can modify cell proliferation and differentiation, and is reported to have therapeutic effects on AD pathology.</p><p><strong>Objective: </strong>We aimed to assess the effects of ATRA in microglia and astrocytes on TG2 expression and glial functions.</p><p><strong>Methods: </strong>After treatment with ATRA, TG2 expression and TG activity were assayed in both murine microglia BV-2 cells and cultured rat brain astrocytes. Endocytosis activity in BV-2 cells and Aβ aggregation by astrocytes conditioned medium were also assessed.</p><p><strong>Results: </strong>In both BV-2 cells and cultured astrocytes, ATRA increased TG2 expression and TG activity. The increase was blocked by AGN194310, an RA receptor antagonist. ATRA enhanced the endocytosis activity in BV-2 cells, and the addition of AGN194310 reversed it. The addition of cystamine, a competitive TG inhibitor, also reduced ATRA-enhanced endocytosis activity. On the other hand, Aβ aggregation was potentiated by ATRA-treated astrocytes conditioned medium compared to control astrocytes conditioned medium.</p><p><strong>Conclusion: </strong>These results suggest that ATRA increased TG2 expression and TG activity via RA receptor in microglia and astrocytes. ATRA-enhanced TGs might be involved in phagocytosis and Aβ aggregation. Adequate control of TGs expression and function in microglia and astrocytes can be an important factor in AD pathology.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118761429254388230922112915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Activation of microglia and astrocytes has been observed in Alzheimer's disease (AD). Transglutaminase 2 (TG2) is reported to be activated in AD and involved in cell proliferation, differentiation, and inflammation. Moreover, amyloid β (Aβ) aggregation is detected as a characteristic pathology in the AD brain, and is known to be a substrate of TG2. All-trans retinoic acid (ATRA) can modify cell proliferation and differentiation, and is reported to have therapeutic effects on AD pathology.

Objective: We aimed to assess the effects of ATRA in microglia and astrocytes on TG2 expression and glial functions.

Methods: After treatment with ATRA, TG2 expression and TG activity were assayed in both murine microglia BV-2 cells and cultured rat brain astrocytes. Endocytosis activity in BV-2 cells and Aβ aggregation by astrocytes conditioned medium were also assessed.

Results: In both BV-2 cells and cultured astrocytes, ATRA increased TG2 expression and TG activity. The increase was blocked by AGN194310, an RA receptor antagonist. ATRA enhanced the endocytosis activity in BV-2 cells, and the addition of AGN194310 reversed it. The addition of cystamine, a competitive TG inhibitor, also reduced ATRA-enhanced endocytosis activity. On the other hand, Aβ aggregation was potentiated by ATRA-treated astrocytes conditioned medium compared to control astrocytes conditioned medium.

Conclusion: These results suggest that ATRA increased TG2 expression and TG activity via RA receptor in microglia and astrocytes. ATRA-enhanced TGs might be involved in phagocytosis and Aβ aggregation. Adequate control of TGs expression and function in microglia and astrocytes can be an important factor in AD pathology.

全反式维甲酸增加了BV-2细胞和培养的星形胶质细胞中转谷氨酰胺酶2的表达。
背景:在阿尔茨海默病(AD)中观察到小胶质细胞和星形胶质细胞的活化。据报道,转谷氨酰胺酶2(TG2)在AD中被激活,并参与细胞增殖、分化和炎症。此外,淀粉样蛋白β(Aβ)聚集被检测为AD大脑的一种特征性病理,并且已知是TG2的底物。全反式维甲酸(ATRA)可以改变细胞增殖和分化,据报道对AD病理有治疗作用。目的:我们旨在评估小胶质细胞和星形胶质细胞中ATRA对TG2表达和神经胶质功能的影响。方法:用ATRA处理后,测定小鼠小胶质细胞BV-2细胞和培养的大鼠脑星形胶质细胞中TG2的表达和TG活性。还评估了BV-2细胞的内分泌活性和星形胶质细胞条件培养基对Aβ的聚集。结果:在BV-2细胞和培养的星形胶质细胞中,ATRA均增加了TG2的表达和TG活性。这种增加被RA受体拮抗剂AGN194310阻断。ATRA增强了BV-2细胞的内吞活性,AGN194310的加入逆转了这种活性。竞争性TG抑制剂胱胺的加入也降低了ATRA增强的内吞活动。另一方面,与对照星形胶质细胞条件培养基相比,ATRA处理的星形胶质细胞培养基增强了Aβ聚集。结论:ATRA通过RA受体增加小胶质细胞和星形胶质细胞中TG2的表达和TG活性。ATRA增强的TGs可能参与吞噬和Aβ聚集。对小胶质细胞和星形胶质细胞中TGs表达和功能的充分控制可能是AD病理的一个重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信