ChemospherePub Date : 2024-10-01Epub Date: 2024-10-15DOI: 10.1016/j.chemosphere.2024.143535
Hilda G Cisneros-Ontiveros, Luis F Zubieta-Otero, Nahum A Medellín-Castillo, Alfredo I Flores-Rojas, Mario E Rodriguez-Garcia
{"title":"Extraction of bio-hydroxyapatite from devilfish (Loricariidae) for the fluoride and cadmium adsorption from water and its feasible photocatalytic properties.","authors":"Hilda G Cisneros-Ontiveros, Luis F Zubieta-Otero, Nahum A Medellín-Castillo, Alfredo I Flores-Rojas, Mario E Rodriguez-Garcia","doi":"10.1016/j.chemosphere.2024.143535","DOIUrl":"10.1016/j.chemosphere.2024.143535","url":null,"abstract":"<p><p>In this study, the adsorption capacity of bio-hydroxyapatite (Bio-HAp) from devilfish for the removal of F<sup>-</sup> and Cd(II) from aqueous solutions was investigated. This material was synthesized according to a 2FI factorial experimental design by varying the extraction conditions for Bio-HAp, including the type of pretreatment (alkaline and peroxide), the calcination temperature from 550 to 850 °C, and the sonication process. The maximum adsorption capacities were 8.48 and 83.56 mg g<sup>-1</sup> for F<sup>-</sup> and Cd(II), respectively. Statistical analysis showed the importance of the type of pretreatment, temperature, and sonication for adsorption. The predicted optimal conditions were Bio-HAp extracted from bone with peroxide pretreatment, calcination at 550 °C and sonication. The surface of the Bio-HAp was found to be mesoporous and basic in character. TGA, FT-IR and SEM-EDS characterizations confirmed the presence of F<sup>-</sup> and Cd(II) on the Bio-HAp surface and confirmed the adsorption mechanisms by electrostatic forces, ion exchange, and chemisorption. The Praunitz-Rake model of adsorption isotherm showed better agreement with the equilibrium adsorption data of F<sup>-</sup> and Cd(II) at pH 7. Furthermore, photodegradation experiments showed 100% degradation methylene blue (MB) under natural sunlight. This study indicates an effective photodegradation process, suggesting high adsorption capacity of the samples. The use of devilfish as an adsorbent promises to be a viable and sustainable option for the removal of fluoride and cadmium from water, and for use in photodegradation experiments.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-10-01Epub Date: 2024-10-18DOI: 10.1016/j.chemosphere.2024.143574
Konstantinos Tsompanoglou, Athanasia Iliopoulou, Petros Mastoras, Athanasios S Stasinakis
{"title":"A new approach on the management of landfill leachate reverse osmosis concentrate: Solar distillation coupled with struvite recovery and biological treatment.","authors":"Konstantinos Tsompanoglou, Athanasia Iliopoulou, Petros Mastoras, Athanasios S Stasinakis","doi":"10.1016/j.chemosphere.2024.143574","DOIUrl":"10.1016/j.chemosphere.2024.143574","url":null,"abstract":"<p><p>The management of reverse osmosis (RO) concentrate remains a challenging task for operators of Landfill Leachates Treatment Plants. In this article we suggest an integrated treatment scheme for RO concentrate that combines solar distillation, struvite precipitation to reduce ammonia content of the distillate and biological treatment of the supernatant either with mixed cultures of bacteria or with microalgae. Experiments in a pilot-scale solar still, equipped with underfloor heating system, showed that the production rate of the distillate ranged up to 3.17 L/d m<sup>2</sup>. The distillate was characterized by elevated average concentrations of ammonium nitrogen; 2028 mg/L and 1358 mg/L in the two experiments conducted, respectively. A decreasing trend on concentrations of NH<sub>4</sub><sup>+</sup>-N was noticed during these experiments, while the opposite was observed for COD. Struvite recovery experiments showed that the optimum Mg:NH<sub>4</sub>:PO<sub>3</sub> ratio was that of 2:1:5.8. Under these conditions, the NH<sub>4</sub><sup>+</sup>-N removal reached 88%. Further treatment of the process supernatant into a 4-L hybrid sequencing batch reactor with biocarriers and activated sludge achieved NH<sub>4</sub><sup>+</sup>-N removal higher than 98% in Phases C and D, where 450 and 600 mL of supernatant were added, respectively. Similar removal was also observed in a 2-L bioreactor with microalgae Chlorella sorokiniana when 150 mL of struvite supernatant were added (Phase B) while further increase of the amount of added supernatant to 200 mL resulted to a sharp stop of NH<sub>4</sub><sup>+</sup>-N consumption (Phase C). Calculations for a landfill serving 20,000 inhabitants and a daily RO concentrate production of 6 m<sup>3</sup>/d showed that the required area for the construction of the solar still was 1893 m<sup>2</sup> and the volumes of the hybrid and the microalgae reactor were 54 m<sup>3</sup> and 60 m<sup>3</sup>, respectively. The recovered solid material of struvite process, after characterization for heavy metals and organic micropollutants, could be reused to the fertilizers industry.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-10-01Epub Date: 2024-10-13DOI: 10.1016/j.chemosphere.2024.143540
Samikannu Prabu, Madhan Vinu, Kung-Yuh Chiang
{"title":"Temperature-dependent highly active LaCaMgAl<sub>2</sub>O<sub>4</sub> catalyst effect on carbon nanomaterial and hydrogen generation from polymethyl methacrylate plastic.","authors":"Samikannu Prabu, Madhan Vinu, Kung-Yuh Chiang","doi":"10.1016/j.chemosphere.2024.143540","DOIUrl":"10.1016/j.chemosphere.2024.143540","url":null,"abstract":"<p><p>The increasing accumulation of waste polymethyl methacrylate (PMMA) plastics presents a significant environmental challenge, while the demand for renewable energy sources continues to rise. Thermochemical recycling is a prospective technique for converting waste plastics into high-value chemicals, both economically and environmentally. In this work, the catalytic pyrolysis of waste PMMA plastics over LaCaMgAl<sub>2</sub>O<sub>4</sub> nanosheets (NSs) catalyst is being investigated for its potential to produce hydrogen and carbon nanotubes (CNTs) in a two-stage fixed-bed reactor. The yield and purity of the gaseous products, as well as carbon deposition, concerning the effects of temperature during the catalysis process. Additionally, a small portion of LaCa was incorporated into the MgAl<sub>2</sub>O<sub>4</sub> composite in the pre-catalysts under investigation. Analyzing the physicochemical properties of the carbon nanomaterials that form provides valuable insights into the workings of different catalysts. It's noteworthy that LaCaMgAl<sub>2</sub>O<sub>4</sub> NSs showed such large yields of H<sub>2</sub> (82.71 vol% H<sub>2</sub>) and CNTs (388 mg g<sup>-1</sup>) at 750 °C. The LaCaMgAl<sub>2</sub>O<sub>4</sub> NSs catalyst's impressive ability to produce CNTs and H<sub>2</sub> gas at high yields underscores its efficacy and potential for real-world catalytic pyrolysis applications. This study emphasizes the Nanocatalyst's potential for large-scale catalytic pyrolysis operations, providing a workable and efficient way of converting waste plastics into high-value products and renewable energy.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-09-01Epub Date: 2024-08-14DOI: 10.1016/j.chemosphere.2024.143074
E Pasecnaja, V Bartkevics, D Zacs
{"title":"Occurrence of perfluoroalkyl compounds in commercially available baby food produced in different European countries - levels, dietary intake, and exposure assessment.","authors":"E Pasecnaja, V Bartkevics, D Zacs","doi":"10.1016/j.chemosphere.2024.143074","DOIUrl":"10.1016/j.chemosphere.2024.143074","url":null,"abstract":"<p><p>The presence of per- and polyfluoroalkyl substances (PFASs) in commercial baby food products from various European countries was investigated in this study. A total of 96 samples were collected and analyzed to assess PFASs levels, composition profiles, and potential dietary intake among infants. The results indicated detectable levels of PFASs in the sampled baby food products, with carboxylic acid prevalence over sulfonic acids. Among the various baby food groups studied, dry cereals exhibited the highest PFASs concentrations. This finding emphasizes the need for further monitoring and investigation of PFASs contamination in this specific food category. While the concentrations detected were generally low, they indicated the widespread presence of PFASs in various types of baby food. Furthermore, a preliminary exposure assessment was conducted on the basis of the measured PFASs concentrations, providing an initial insight into the potential exposure levels among infants from three months to three years old. Calculations based on two scenario types revealed the best-case scenario likely underestimating actual exposure, while the worst-case scenario occasionally exceeded the limits set by the governmental institutions. Further research is needed to understand the sources, pathways, and potential health effects of PFASs exposure in this vulnerable population.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141997081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-09-01Epub Date: 2024-08-21DOI: 10.1016/j.chemosphere.2024.143122
Mohamed A Ghorab, David Lieu, Evisabel A Craig
{"title":"Use of the threshold of toxicological concern (TTC) approach as an alternative tool for regulatory purposes: A case study with an inert ingredient used in pesticide products.","authors":"Mohamed A Ghorab, David Lieu, Evisabel A Craig","doi":"10.1016/j.chemosphere.2024.143122","DOIUrl":"10.1016/j.chemosphere.2024.143122","url":null,"abstract":"<p><p>This study investigates the potential of the Threshold of Toxicological Concern (TTC) as an alternative to traditional animal testing in pesticide regulatory risk assessments. The TTC is a principle that establishes exposure threshold values for chemicals with certain structural features, below which there is no appreciable risk to human health. A case study was conducted with α-terpineol, an inert ingredient proposed to be used at low concentrations in pesticide products, to compare a conventional risk assessment using animal data with one using the TTC method. For the conventional risk assessment, animal data showed that there was no toxicity endpoint of concern, which resulted in a qualitative assessment and no risks of concern identified. For the risk assessment using the TTC method, a 5th percentile no-observed-effect level (NOEL) selected based on α-terpineol's Cramer classification was used as a point of departure (POD) for a quantitative risk assessment that resulted in no risks of concern identified. Therefore, the same conclusion was reached with both approaches and α-terpineol is considered safe for use in pesticide products at low concentrations. A comparative analysis was also performed to determine the applicability of the TTC method in calculating potential dietary risk from common pesticide use patterns for chemicals that fall within different Cramer classes. Results showed that use of the TTC method may be feasible for inert ingredient risk assessments when chemicals are used in a pesticide product at concentrations below 1%. This research underscores the TTC as a valuable and robust tool for assessing the potential hazards from inert ingredient use in pesticide formulations, considering factors such as chemical properties and the concentrations at which a chemical may be used in pesticide products. These findings contribute to the ongoing efforts by the United States Environmental Protection Agency (US EPA) to reduce animal testing in chemical safety assessments. The TTC method presents a viable alternative for risk evaluations of chemicals used at low concentrations, with anticipated low exposure, and with a predicted low toxicity potential.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-09-01Epub Date: 2024-08-29DOI: 10.1016/j.chemosphere.2024.143191
Silver Odongo, Patrick Ssebugere, Peter S Spencer, Valerie S Palmer, Raquel Valdes Angues, Amos Deogratius Mwaka, John Wasswa
{"title":"Organochlorine pesticides and their markers of exposure in serum and urine of children from a nodding syndrome hotspot in northern Uganda, east Africa.","authors":"Silver Odongo, Patrick Ssebugere, Peter S Spencer, Valerie S Palmer, Raquel Valdes Angues, Amos Deogratius Mwaka, John Wasswa","doi":"10.1016/j.chemosphere.2024.143191","DOIUrl":"10.1016/j.chemosphere.2024.143191","url":null,"abstract":"<p><p>Nodding syndrome (NS) is a neurologic disorder of unknown etiology characterized by vertical head nodding that has affected children aged 5-18 years in East Africa. Previous studies have examined relationships with biological agents (e.g., nematodes, measles, and fungi), but there is limited data on the possible contributions of neurotoxic environmental chemicals frequently used as pesticides/insecticides to the development and progression of this disorder. We examined the levels of persistent organochlorine pesticides (OCPs) in children (5-18 years old) from Kitgum District, Northern Uganda. These children previously lived in internally displaced people's (IDP) camps, where they were exposed to various health risks, including contaminated food and water. Exposure to OCPs through contaminated food and water is postulated here as a potential contributor to NS etiology. We analyzed serum (n = 75) and urine (n = 150) samples from children diagnosed with NS, and from seizure-free household controls (HC), and community controls (CC). Samples were extracted using solid-phase extraction (SPE) and extracts were analyzed for OCPs using gas chromatography with a triple quadrupole mass spectrometry (GC-MS/MS). Mean levels of total (∑) ∑OCPs in serum samples from NS, HC and CC subjects were 23.3 ± 2.82, 21.1 ± 3.40 and 20.9 ± 4.24 ng/mL, respectively, while in urine samples were 1.86 ± 1.03, 2.83 ± 1.42, and 2.14 ± 0.94 ng/mL, respectively. Correlation and linear regression analysis indicated that potential markers for ∑hexachlorocyclohexanes (HCHs), ∑chlordane compounds (CHLs), ∑endosulfan and ∑dichlorodiphenyltrichloroethanes (DDTs) were γ-HCH, heptachlor-exo-epoxide, endosulfan-α and p,p'-DDD in NS cases while in controls were α -HCH, heptachlor, endosulfan-α and p,p'-DDE, respectively. Since, in some instances, higher OCP levels were found in controls vs. NS cases, we conclude that exposure to organochlorine pesticides is unlikely to be associated with the etiology of NS.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-09-01Epub Date: 2024-09-02DOI: 10.1016/j.chemosphere.2024.143221
Muhammad Tariq Khan, Sajid Rashid, Unzile Yaman, Saeed Ahsan Khalid, Asif Kamal, Mushtaq Ahmad, Nasrin Akther, Md Abul Kashem, Md Faysal Hossain, Wajid Rashid
{"title":"Microplastic pollution in aquatic ecosystem: A review of existing policies and regulations.","authors":"Muhammad Tariq Khan, Sajid Rashid, Unzile Yaman, Saeed Ahsan Khalid, Asif Kamal, Mushtaq Ahmad, Nasrin Akther, Md Abul Kashem, Md Faysal Hossain, Wajid Rashid","doi":"10.1016/j.chemosphere.2024.143221","DOIUrl":"10.1016/j.chemosphere.2024.143221","url":null,"abstract":"<p><p>Environmental pollution due to plastic waste is a global challenge causing adverse impacts on the ecosystem and public health. Microplastic (MP) originates at the upstream processes such as industrial and household activities; however, their existence is affecting the downstream environment. Even though many governments and non-government organizations have taken technological and regulatory steps, these current efforts and strategies are insufficient to prevent the MP release in the environment. Thus, a multidisciplinary global approach is required, which must prioritize the reducing of plastic inputs to the environment. To regulate MP levels in the environment, worldwide reformative and preventive strategies are required because the issue is not limited to a single nation or region. In relation to marine plastic waste, a number of multilateral agreements and measures exist at global level. Several regulatory measures have been examined by regulatory bodies with the intention of safeguarding the environment from excessive MP contamination. However, neither of the frameworks in place is specifically made to stop the increased MP pollution in the environment. Therefore, this review focused on the preventive measures taken by the government and non-government organizations for MP control through legislations. The study also critically discussed MP-related policies aiming to increase the viability and efficiency of implementing future plastic management. This review is expected to provide the basic guidelines for formulating MP standards in the environment.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-09-01Epub Date: 2024-09-02DOI: 10.1016/j.chemosphere.2024.143253
Yixuan Yu, Yi Zhou, Kunpeng Liu, Baogang Zhao, Yufei Kang, Tianjun Sun
{"title":"Using ligand regulation, metal replacement, and ligand doping strategies on Zr-FUM to improve methane separation from coalbed gas.","authors":"Yixuan Yu, Yi Zhou, Kunpeng Liu, Baogang Zhao, Yufei Kang, Tianjun Sun","doi":"10.1016/j.chemosphere.2024.143253","DOIUrl":"10.1016/j.chemosphere.2024.143253","url":null,"abstract":"<p><p>Developing adsorbents suitable for industrial applications that can effectively enhance the separation of methane (CH<sub>4</sub>) from nitrogen (N<sub>2</sub>) in coalbed gas is crucial to improve energy recovery and mitigate greenhouse gas emissions. In this study, three modification strategies were implemented on Zr-FUM, including ligand regulation, metal replacement, and ligand doping, to synthesize Zr-FDCA, Al-FUM, and Zr-FUM-FA, with the aim of improving the performance of CH<sub>4</sub>/N<sub>2</sub> separation under humid conditions. The results demonstrated that the promotion of robust orbital overlap and strengthened electrovalent bonding on adsorbents can selectively enhance CH<sub>4</sub> adsorption. As a result, Zr-FUM-FA achieved a saturated CH<sub>4</sub> adsorption capacity of 1.37 mmol/g, a CH<sub>4</sub> working window of 307 s, and a CH<sub>4</sub>/N<sub>2</sub> sorbent selection parameter (Ssp) of 47.31, exceeding the performance of most reported adsorbents. Analyses of the pore structure, surface morphology, and functional groups revealed that the presence of an ultramicropore proximity to CH<sub>4</sub>, reduced static resistance, and enhanced electrovalent bond were key factors for CH<sub>4</sub> separation. Grand Canonical Monte Carlo and Density Functional Theory studies indicated that the introduction of -C-H- in FA played a crucial role in enhancing CH<sub>4</sub> adsorption. Optimization of adsorption parameters using the Aspen adsorption package showed that in a dual-adsorbent bed system, the recovery and purity of CH<sub>4</sub> in Zr-FUM-FA reach 99.5% and 97.3%, respectively, providing important theoretical support for the improvement of CH<sub>4</sub> recovery in the pressure swing adsorption process from coalbed gas.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-09-01Epub Date: 2024-08-10DOI: 10.1016/j.chemosphere.2024.143059
Yijie Zhang, Yohannes L Yaphary, Xiaotong Jiao, Sam Fong Yau Li
{"title":"Valorization of sewage sludge incineration ash as a novel soilless growing medium for urban agriculture and greenery.","authors":"Yijie Zhang, Yohannes L Yaphary, Xiaotong Jiao, Sam Fong Yau Li","doi":"10.1016/j.chemosphere.2024.143059","DOIUrl":"10.1016/j.chemosphere.2024.143059","url":null,"abstract":"<p><p>Limited open areas for urban agriculture and greenery have led to the search for innovative, sustainable growing media to strengthen the food supply and improve atmospheric quality for a resilient city. Rampant land developments have caused soil to become increasingly scarce. Sewage sludge incineration ash (SSIA), the by-product of waste-to-energy (WtE) incineration of sewage sludge, is a major municipal waste containing phosphorus-fertilizing nutrients. For the first time, we investigated the novel application of SSIA as a soilless plant-growing medium with built-in fertilizer. SSIA outperformed topsoil in bulk density, water-holding capacity, porosity, and nutrient content. However, it was found that SSIA has a high salinity and should be treated first. Wheatgrass (Triticum aestivum L.), a fast-growing glycophyte, thrived in the desalinated SSIA, showing growth and nutrient content comparable to the topsoil case. Simultaneously, it demonstrated phytoremediation. The SSIA residue was then recycled into cementitious materials, using desalinating water for mixing. SSIA upcycle into a growing medium facilitates urban resource management by utilizing nutrients in sewage waste for eco-friendly plant cultivation, benefiting urban agriculture and greenery. It is also a prudent valorization step before further recycling SSIA to reduce landfill requirements.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2024-09-01Epub Date: 2024-09-03DOI: 10.1016/j.chemosphere.2024.143261
Jeferson Santana Ursulino, Reginaldo Correia Silva Filho, Edmilson Rodrigues da Rocha Junior, Alessandre Carmo Crispim, Josué Carinhanha Caldas Santos, Ana Catarina Rezende Leite, Thiago Mendonça de Aquino
{"title":"NMR-based metabolomics analysis reveals the effect of environmental contamination exposure on fishermen living around the Mundaú Lagoon in Maceió (Alagoas, Brazil).","authors":"Jeferson Santana Ursulino, Reginaldo Correia Silva Filho, Edmilson Rodrigues da Rocha Junior, Alessandre Carmo Crispim, Josué Carinhanha Caldas Santos, Ana Catarina Rezende Leite, Thiago Mendonça de Aquino","doi":"10.1016/j.chemosphere.2024.143261","DOIUrl":"10.1016/j.chemosphere.2024.143261","url":null,"abstract":"<p><p>The Mundaú lagoon in Maceió (Alagoas, Brazil) is a crucial resource for the local population, particularly fishing communities. Recent studies have revealed potential toxic metal contamination in the lagoon, particularly with mercury (Hg) levels exceeding the maximum regulated values. This inorganic contaminant may be impacting the health of fishermen and the local population. In this context, metabolomics, a study of small-molecule metabolites, can offer insights into the physiological impact of environmental contamination on humans. Thus, volunteers from the control and exposed groups were selected, considering the main exposure criteria primarily defined by their proximity and interaction with the lagoon. Blood and urine samples were collected from the volunteers and subjected to analysis using NMR spectroscopy. The data underwent Principal Component Analysis (PCA) and Orthogonal Partial Least-Squares Discriminant Analysis (OPLS-DA) based on metabolic patterns to establish group discrimination or identification. Metabolic pathways were assessed through enrichment analysis. The study revealed several metabolic disturbances in the exposed group's urine and plasma samples compared to control group. Noteworthy findings included arginine and proline metabolism disruptions, indicative of ammonia recycling and urea cycle impairment. These changes suggest compromised ammonia detoxification in the exposed group. Disturbances in the tricarboxylic acid (TCA) cycle and the transfer of acetyl groups into mitochondria suggested systemic metabolic stress in energy metabolism. Furthermore, elevated carnitine and ketone levels may indicate compensatory responses to low TCA cycle activity. Alterations in glutamate and glutathione metabolism and imbalances in glutathione levels indicate oxidative stress and impaired detoxification. This study highlights significant metabolic changes in fishermen exposed to contaminated environments, which can affect various metabolic pathways, including energy metabolism and antioxidant processes, potentially making individuals more vulnerable to the adverse effects of environmental contaminants. Finally, this work highlights insights into the relationship between environmental contamination and metabolic pathways, particularly in regions with limited studies.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}