Chemosphere最新文献

筛选
英文 中文
Enhancing lead extraction efficiency from contaminated soil: A synergistic approach combining biodegradable chelators and surfactants. 提高从受污染土壤中提取铅的效率:结合生物降解螯合剂和表面活性剂的协同方法。
Chemosphere Pub Date : 2024-10-01 Epub Date: 2024-10-11 DOI: 10.1016/j.chemosphere.2024.143528
Shengbin Ni, Shafiqur Rahman, Shoji Yoshioka, Minami Imaizumi, Kuo H Wong, Asami S Mashio, Akio Ohta, Hiroshi Hasegawa
{"title":"Enhancing lead extraction efficiency from contaminated soil: A synergistic approach combining biodegradable chelators and surfactants.","authors":"Shengbin Ni, Shafiqur Rahman, Shoji Yoshioka, Minami Imaizumi, Kuo H Wong, Asami S Mashio, Akio Ohta, Hiroshi Hasegawa","doi":"10.1016/j.chemosphere.2024.143528","DOIUrl":"10.1016/j.chemosphere.2024.143528","url":null,"abstract":"<p><p>Lead (Pb), a persistent and bio-accumulative contaminant, poses threats to the environment and human health. The effective removal of Pb from contaminated soil proves challenging due to its tendency to form stable complexes with soil components. Chelators have been extensively studied for their ability to extract metal contaminants, including Pb, from soil environment. However, the prolonged environmental persistence of traditional chelators and the high cost of biodegradable alternatives have hindered their practical application in remediation efforts. This study investigated a novel synergistic approach that combined a biodegradable chelator, [S,S]-ethylenediamine succinic acid (EDDS), with cationic and anionic surfactants to enhance Pb extraction efficiency. The study revealed that cationic surfactants, such as cetylpyridinium chloride (CPC) and cetyltrimethylammonium bromide (CTAB), significantly enhanced Pb extraction efficiency when combined with EDDS, whereas anionic surfactants, like sodium N-dodecanoyl-taurinate (SDT) and sodium dodecyl sulfate (SDS), inhibited the extraction process. Specifically, blending 5 mmol L<sup>-1</sup> EDDS with 20 mmol L<sup>-1</sup> CPC resulted in a 72.6% enhancement in Pb extraction efficiency. The proposed synergistic strategy offers a promising avenue for soil remediation, mitigating Pb contamination while preserving essential soil minerals. By addressing chelator limitations and improving efficiency, this approach presents a viable solution for enhancing soil remediation practices.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":"366 ","pages":"143528"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring electrochemical mechanisms for clindamycin degradation targeted at the efficient treatment of contaminated water. 探索克林霉素降解的电化学机制,以高效处理受污染的水。
Chemosphere Pub Date : 2024-10-01 Epub Date: 2024-10-18 DOI: 10.1016/j.chemosphere.2024.143563
Julia Faria, William Santacruz, Rodrigo De Mello, Maria Valnice Boldrin, Artur J Motheo
{"title":"Exploring electrochemical mechanisms for clindamycin degradation targeted at the efficient treatment of contaminated water.","authors":"Julia Faria, William Santacruz, Rodrigo De Mello, Maria Valnice Boldrin, Artur J Motheo","doi":"10.1016/j.chemosphere.2024.143563","DOIUrl":"10.1016/j.chemosphere.2024.143563","url":null,"abstract":"<p><p>Numerous studies reveal pollutants like clindamycin (CLD) in the environment, posing environmental and health risks. Conventional water treatment methods are ineffective at removing these contaminants, typically found in low concentrations. An innovative treatment approach is introduced through pre-concentration via adsorption, which is highly efficient, energy-saving, and reusable. The innovation uses solvents like methanol or ethanol to desorb pollutants, creating concentrated CLD solutions for more effective electrochemical degradation than conventional methods. Thus, this study explores, for the first time, the behavior of CLD electro-oxidation in different media-water, methanol, and ethanol-using a Dimensionally Stable Anode (DSA®-Cl₂). The study reveals distinct degradation mechanisms and offers new insights into solvent-assisted electrochemical treatments. After 30 min of electrolysis, all the current densities evaluated promoted significant degradation, ranging from 90 to 92%. The energy consumption was 2.9 Wh m⁻³ per percentage point at current densities of 2 and 3.5 mA cm⁻<sup>2</sup>. This demonstrates that using higher current densities over shorter electrolysis times is feasible, achieving removal rates of approximately 90%.The performance of chloride-based electrolytes was superior to that of sulfate-based electrolytes due to the ability of DSA®-Cl<sub>2</sub> electrodes to generate reactive chlorine species more efficiently. A higher concentration of supporting electrolytes initially improved CLD removal, but no significant changes were observed after 1 h. Neutral pH conditions optimized CLD degradation, achieving up to 91% removal. Higher pollutant concentrations were associated with lower kinetic constants and decreased removal percentages. Methanol and ethanol enhanced removal rates to 98.3% and 92.3%, respectively, by generating oxidizing species such as methoxy, hydroxymethyl, and ethoxy radicals. The degradation by-products differed across the three media, with each solvent exhibiting distinct oxidation mechanisms. These findings highlight the potential of using methanol or ethanol as an electrolytic medium with efficiency comparable to water.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":"366 ","pages":"143563"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly efficient oxygen carrier NiFeP (oxy) hydroxides nanoparticle embedded in N-doped porous carbon derived from bio-waste for bifunctional electrocatalysts. 嵌入从生物废料中提取的掺杂 N 的多孔碳中的高效载氧体 NiFeP(氧)氢氧化物纳米粒子,用于双功能电催化剂。
Chemosphere Pub Date : 2024-10-01 Epub Date: 2024-10-12 DOI: 10.1016/j.chemosphere.2024.143486
Madhan Vinu, Kung-Yuh Chiang
{"title":"Highly efficient oxygen carrier NiFeP (oxy) hydroxides nanoparticle embedded in N-doped porous carbon derived from bio-waste for bifunctional electrocatalysts.","authors":"Madhan Vinu, Kung-Yuh Chiang","doi":"10.1016/j.chemosphere.2024.143486","DOIUrl":"10.1016/j.chemosphere.2024.143486","url":null,"abstract":"<p><p>Developing cost-effective, readily available materials for efficient hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting is a crucial step toward enhancing the profitability and sustainability of energy conversion systems. This research introduces a novel synthesis method for NiFeP/NPC OHs from banana peel bio-waste, a method that could revolutionize the field of materials science and electrochemistry. The use of metallic phosphides, known for their excellent electrical conductivity and catalytic activity, as bifunctional catalysts, combined with the efficient synthesis of nanoporous carbons (NPC) from banana peel bio-waste (BPW), could pave the way for a new era of sustainable and cost-effective energy conversion. By chemically activating different porogens, such as nickel, iron, and phosphorus (NiFeP), to form (oxy) hydroxides (OHs), functional carbonaceous structures with a high density of pores and large specific surface areas can be achieved. The resulting materials, designated as NiFeP/NPC OHs, are characterized by their remarkable porosity, high conductivity, large surface area, and chemical stability. These properties make NiFeP/NPC OHs particularly suitable for electrocatalysis, where they exhibit outstanding activity in both HER and OER. The optimized NiFeP/NPC OHs material shows a very low overpotential of 93 mV for HER and 243 mV for OER at 10 mA cm⁻<sup>2</sup> and high durability over 100 h. Moreover, the bifunctional NiFeP/NPC OHs electrode demonstrates exceptional catalytic activity and stability in alkaline solutions. This study not only highlights the innovative synthesis of NPC from BPW and the cost-effective fabrication of NiFeP/NPC OHs but also sparks curiosity about the potential of this novel synthesis method.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":"366 ","pages":"143486"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification, characteristics, harmless treatment and safety assessment of antibiotic pharmaceutical wastewater (APWW): A comprehensive review. 抗生素制药废水(APWW)的分类、特征、无害化处理和安全评估:综合综述。
Chemosphere Pub Date : 2024-10-01 Epub Date: 2024-10-09 DOI: 10.1016/j.chemosphere.2024.143504
Jiawen Wang, Xuesong Hui, Huiling Liu, Xiaohu Dai
{"title":"Classification, characteristics, harmless treatment and safety assessment of antibiotic pharmaceutical wastewater (APWW): A comprehensive review.","authors":"Jiawen Wang, Xuesong Hui, Huiling Liu, Xiaohu Dai","doi":"10.1016/j.chemosphere.2024.143504","DOIUrl":"10.1016/j.chemosphere.2024.143504","url":null,"abstract":"<p><p>The issues related to the spread of antibiotics and antibiotic resistance genes (ARGs) have garnered significant attention from researchers and governments. The production of antibiotics can lead to the emission of high-concentration pharmaceutical wastewater, which contains antibiotic residues and various other pollutants. This review compiles the classification and characteristics of antibiotic pharmaceutical wastewater (APWW), offers an overview of the development, advantages, and disadvantages of diverse harmless treatment processes, and presents a strategy for selecting appropriate treatment approaches. Biological treatment remains the predominant approach for treating APWW. In addition, several alternative methods can be employed to address the challenges associated with APWW treatment. On the other hand, the present safety assessment of the effluent resulting from APWW treatment is inadequate, necessitating more comprehensive research in this domain. It is recommended that researches in this area consider the issue of toxicity and antibiotic resistance as well. The PNEC<sup>R</sup> model (similar to ecotoxicological PNECs but used to specifically refer to endpoints related to antimicrobial resistance) (Murray et al., 2024) is an emerging tool used for evaluating the antimicrobial resistance (AMR) issue. This model is, characterized by its simplicity and effectiveness, is a promising tool for assessing the safety of treated APWW.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143504"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to 'Voltammetric sensing of Cd(II) at ZIF-8/GO modified electrode: Optimization and field measurements' [Chemosphere 329 (2023) 138710]. ZIF-8/GO 改性电极对镉(II)的伏安法传感:优化和现场测量' [Chemosphere 329 (2023) 138710]。
Chemosphere Pub Date : 2024-10-01 Epub Date: 2024-10-18 DOI: 10.1016/j.chemosphere.2024.143473
Haitao Lu, Zijie Ke, Li Feng, Bingzhi Liu
{"title":"Corrigendum to 'Voltammetric sensing of Cd(II) at ZIF-8/GO modified electrode: Optimization and field measurements' [Chemosphere 329 (2023) 138710].","authors":"Haitao Lu, Zijie Ke, Li Feng, Bingzhi Liu","doi":"10.1016/j.chemosphere.2024.143473","DOIUrl":"10.1016/j.chemosphere.2024.143473","url":null,"abstract":"","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143473"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to 'Reutilization of post-adsorption lanthanum-loaded straw alleviates phosphorus pollution in rice-wheat system: Subsequent performance and underlying mechanisms'. 对 "吸附后含镧秸秆的再利用减轻了水稻-小麦系统中的磷污染:后续表现和基本机制"。
Chemosphere Pub Date : 2024-10-01 Epub Date: 2024-08-15 DOI: 10.1016/j.chemosphere.2024.143076
Bei Yang
{"title":"Corrigendum to 'Reutilization of post-adsorption lanthanum-loaded straw alleviates phosphorus pollution in rice-wheat system: Subsequent performance and underlying mechanisms'.","authors":"Bei Yang","doi":"10.1016/j.chemosphere.2024.143076","DOIUrl":"10.1016/j.chemosphere.2024.143076","url":null,"abstract":"","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143076"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Food waste biochar for sustainable agricultural use: Effects on soil enzymes, microbial community, lettuce, and earthworms. 用于可持续农业的厨余生物炭:对土壤酶、微生物群落、莴苣和蚯蚓的影响。
Chemosphere Pub Date : 2024-10-01 Epub Date: 2024-10-16 DOI: 10.1016/j.chemosphere.2024.143552
Athanasie Akumuntu, Eun Hea Jho, Seong-Jik Park, Jin-Kyung Hong
{"title":"Food waste biochar for sustainable agricultural use: Effects on soil enzymes, microbial community, lettuce, and earthworms.","authors":"Athanasie Akumuntu, Eun Hea Jho, Seong-Jik Park, Jin-Kyung Hong","doi":"10.1016/j.chemosphere.2024.143552","DOIUrl":"10.1016/j.chemosphere.2024.143552","url":null,"abstract":"<p><p>This study investigates the effects of food waste biochar (FWB) on the biological properties of soil, including the microbial community structure, enzyme activities, lettuce growth, and earthworm ecotoxicity. This holistic assessment of various soil organisms was used to assess the potential of FWB as a soil amendment strategy. Pot experiments were carried out over a 28-d period using various FWB concentrations in soil (0-3% w/w). The presence of FWB enhanced the activity of alkaline phosphatase and beta-glucosidase in proportion to the FWB concentration. Similarly, the dehydrogenase activity after 28 d was positively correlated with the FWB concentration. Notably, the application of FWB improved the bacterial diversity in the soil, particularly among hydrocarbonoclastic bacteria, while also prompting a shift in the fungal community structure at the class level. Measures of lettuce growth, including total fresh weight, shoot length, and leaf number, also generally improved with the addition of FWB, particularly at higher concentrations. Importantly, FWB did not adversely affect the survival or weight of earthworms. Collectively, these findings suggest that FWB can enhance soil microbial enzyme activity and support plant growth-promoting rhizobacteria, potentially leading to increased crop yields. This highlights the potential of FWB as an eco-friendly soil amendment strategy.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":"366 ","pages":"143552"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Per- and polyfluoroalkyl substances in food and beverages: determination by LC-HRMS and occurrence in products from the Belgian market. 食品和饮料中的全氟烷基和多氟烷基物质:通过 LC-HRMS 进行测定以及比利时市场产品中的出现情况。
Chemosphere Pub Date : 2024-10-01 Epub Date: 2024-10-13 DOI: 10.1016/j.chemosphere.2024.143543
Virginie Van Leeuw, Svetlana V Malysheva, Guillaume Fosseprez, Adrien Murphy, Chaymae El Amraoui Aarab, Mirjana Andjelkovic, Nadia Waegeneers, Els Van Hoeck, Laure Joly
{"title":"Per- and polyfluoroalkyl substances in food and beverages: determination by LC-HRMS and occurrence in products from the Belgian market.","authors":"Virginie Van Leeuw, Svetlana V Malysheva, Guillaume Fosseprez, Adrien Murphy, Chaymae El Amraoui Aarab, Mirjana Andjelkovic, Nadia Waegeneers, Els Van Hoeck, Laure Joly","doi":"10.1016/j.chemosphere.2024.143543","DOIUrl":"10.1016/j.chemosphere.2024.143543","url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) are industrial chemicals encompassing thousands of compounds. Due to their persistent, bioaccumulative and toxic character, PFAS have become environmental contaminants, and exposure to these chemicals may lead to adverse health effects. This study aimed to provide a sensitive analytical method for the quantification of 25 PFAS in food including food for the young population and beverages, and to gather the missing occurrence data for the dietary exposure evaluation for the Belgian population. More than a decade ago, such assessment was performed only for PFOS and PFOA and is currently outdated. For the determination of PFAS in foodstuffs, an extraction based on a \"quick, easy, cheap, effective, rugged, and safe\" (QuEChERS) protocol and combined with a two-step purification using solid-phase extraction (SPE) was optimised. The quantitative analysis was performed by liquid chromatography high-resolution mass spectrometry (LC-HRMS). The method was validated, and the achieved limits of quantification (LOQs) ranged from 0.002 to 0.3 μg/kg, with the exception of HFPO-DA (1 μg/kg). The LC-HRMS analysis of 268 food products from the Belgian market demonstrated that 43% of samples contained at least one PFAS with a maximum of eleven PFAS measured in a stew of wild pork. PFOS was the most detected compound found in 19% of samples, followed by PFBA (18%) and PFOA (15%), while PFTeDA, PFPeS, PFHpS, PFDS, PFUnDS, PFDoDS, PFTrDS, Minor F53B and HFPO-DA were not detected. The concentrations of the different PFAS in commercial food varied from <LOQ to 2.85 μg/kg, with only one crab sample exceeding the maximum level for PFOA set by the Commission Regulation (EU) 2023/915.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":"366 ","pages":"143543"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfur dioxide absorption by novel green solvents of deep eutectic solvents: Modeling screening. 深共晶溶剂的新型绿色溶剂对二氧化硫的吸收:模型筛选。
Chemosphere Pub Date : 2024-10-01 Epub Date: 2024-10-09 DOI: 10.1016/j.chemosphere.2024.143512
Atefe Rajabi, Reza Haghbakhsh, Amir Goshadrou
{"title":"Sulfur dioxide absorption by novel green solvents of deep eutectic solvents: Modeling screening.","authors":"Atefe Rajabi, Reza Haghbakhsh, Amir Goshadrou","doi":"10.1016/j.chemosphere.2024.143512","DOIUrl":"10.1016/j.chemosphere.2024.143512","url":null,"abstract":"<p><p>Sulfur dioxide (SO<sub>2</sub>), produced mainly from the combustion of coal, is the most important cause of acidic rain, skin diseases, and environmental issues. To overcome the environmental problems, SO<sub>2</sub> must be captured on an industrial scale before it is released into the air. In chemical industries, organic solvents are used for partial absorption of SO<sub>2</sub>. However, those organic solvents have negative environmental effects. Thus, proposing environmentally friendly and green solvents for SO<sub>2</sub> absorption is vital for industries. Recently, increased attention has been paid to capturing SO<sub>2</sub> using Deep Eutectic Solvents (DESs) as the most recently introduced category of green solvents. This study performed a comprehensive screening study on the investigation of the performance of various simple and complicated models for SO<sub>2</sub> solubilities in a wide range of different nature DESs. For this purpose, the most updated and largest SO<sub>2</sub> solubility data bank in DESs involving 976 data points for 63 different nature DESs over wide temperature and pressure ranges has been gathered from open literature. For model screening, for the physical absorption models, the performances of SRK and CPA as the simple cubic and complicated sophisticated equations of state, NRTL and UNIQUAC as the well-known activity coefficient models, and for the chemical absorption models, RETM were investigated and compared. For physical absorption models, coupling an equation of state with the UNIQUAC activity coefficient model i.e. CPA-UNIQUAC, SRK-UNIQUAC, and also using simple SRK-SRK models led to the best performances. Compared to all investigated models, RETM as the chemical absorption model showed the best performance with the AARD% value of 12.95. This shows the importance of considering the chemical absorption mechanism for SO<sub>2</sub> absorption by DESs. Finally, general guidelines for using different modeling approaches were proposed to be considered by the researchers.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143512"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extraction of bio-hydroxyapatite from devilfish (Loricariidae) for the fluoride and cadmium adsorption from water and its feasible photocatalytic properties. 从魔鬼鱼(Loricariidae)中提取生物羟基磷灰石用于吸附水中的氟和镉及其可行的光催化性能。
Chemosphere Pub Date : 2024-10-01 Epub Date: 2024-10-15 DOI: 10.1016/j.chemosphere.2024.143535
Hilda G Cisneros-Ontiveros, Luis F Zubieta-Otero, Nahum A Medellín-Castillo, Alfredo I Flores-Rojas, Mario E Rodriguez-Garcia
{"title":"Extraction of bio-hydroxyapatite from devilfish (Loricariidae) for the fluoride and cadmium adsorption from water and its feasible photocatalytic properties.","authors":"Hilda G Cisneros-Ontiveros, Luis F Zubieta-Otero, Nahum A Medellín-Castillo, Alfredo I Flores-Rojas, Mario E Rodriguez-Garcia","doi":"10.1016/j.chemosphere.2024.143535","DOIUrl":"10.1016/j.chemosphere.2024.143535","url":null,"abstract":"<p><p>In this study, the adsorption capacity of bio-hydroxyapatite (Bio-HAp) from devilfish for the removal of F<sup>-</sup> and Cd(II) from aqueous solutions was investigated. This material was synthesized according to a 2FI factorial experimental design by varying the extraction conditions for Bio-HAp, including the type of pretreatment (alkaline and peroxide), the calcination temperature from 550 to 850 °C, and the sonication process. The maximum adsorption capacities were 8.48 and 83.56 mg g<sup>-1</sup> for F<sup>-</sup> and Cd(II), respectively. Statistical analysis showed the importance of the type of pretreatment, temperature, and sonication for adsorption. The predicted optimal conditions were Bio-HAp extracted from bone with peroxide pretreatment, calcination at 550 °C and sonication. The surface of the Bio-HAp was found to be mesoporous and basic in character. TGA, FT-IR and SEM-EDS characterizations confirmed the presence of F<sup>-</sup> and Cd(II) on the Bio-HAp surface and confirmed the adsorption mechanisms by electrostatic forces, ion exchange, and chemisorption. The Praunitz-Rake model of adsorption isotherm showed better agreement with the equilibrium adsorption data of F<sup>-</sup> and Cd(II) at pH 7. Furthermore, photodegradation experiments showed 100% degradation methylene blue (MB) under natural sunlight. This study indicates an effective photodegradation process, suggesting high adsorption capacity of the samples. The use of devilfish as an adsorbent promises to be a viable and sustainable option for the removal of fluoride and cadmium from water, and for use in photodegradation experiments.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":"366 ","pages":"143535"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142483146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信