Chemosphere最新文献

筛选
英文 中文
Photocatalytic degradation of antibiotics by N-doped carbon nanoflakes-nickel ferrite composite derived from algal biomass. 从藻类生物质中提取的 N 掺杂碳纳米片-镍铁氧体复合材料对抗生素的光催化降解。
Chemosphere Pub Date : 2024-09-01 Epub Date: 2024-07-20 DOI: 10.1016/j.chemosphere.2024.142908
Shyamalee Patar, Rishi Mittal, Farishta Yasmin, Balin Kumar Bhuyan, Lakhya Jyoti Borthakur
{"title":"Photocatalytic degradation of antibiotics by N-doped carbon nanoflakes-nickel ferrite composite derived from algal biomass.","authors":"Shyamalee Patar, Rishi Mittal, Farishta Yasmin, Balin Kumar Bhuyan, Lakhya Jyoti Borthakur","doi":"10.1016/j.chemosphere.2024.142908","DOIUrl":"10.1016/j.chemosphere.2024.142908","url":null,"abstract":"<p><p>This work reports the synthesis of nickel ferrite (NiFe) nanoparticles, N-doped mesoporous carbon nanoflakes (NCF) and novel nickel ferrite-carbon nanoflakes (NiFe@NCF) nanocomposite using solvothermal method. NCF was derived from a cyanobacterial consortium consisting of Anabaena, Lyngbya and Weistiellopsis, rich in carbon and nitrogen. The synthesized nanoparticles were used as heterogeneous photocatalyst for degradation of two harmful water pollutants, ciprofloxacin (CIP) and levofloxacin (LEV). 99.91% LEV and 98.86% CIP were degraded within 50 and 70 min of visible light irradiation using NiFe@NCF following pseudo first order kinetics. This improved efficiency of the nanocomposite may be attributed to its higher surface area, reduction of band gap (from 2.42 to 2.19 eV), more active sites as well as charge carrier mobility with decreasing agglomeration tendency of the magnetic nickel nanoparticles upon being embedded on NCF. N-doping improves light harvesting property, retards charge recombination and extends as well as delocalises ᴨ-conjugated system resulting in enhanced photocatalytic activity. The scavenging experiments and EPR analysis reveal that O<sub>2</sub><sup>-•</sup> and •OH are the main active species taking part in the degradation process. The material performs well within a wide range of pH and can be effectively used up to 5 repetitive cycles. A feasible photocatalytic degradation mechanism of the antibiotics against NiFe@NCF nanocomposite is also put forwarded along with their possible degradation pathways from LCMS studies.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fate of antibiotic resistance genes and roles of biochar in wastewater treated with biochar/persulfate. 用生物炭/过硫酸盐处理的废水中抗生素抗性基因的命运和生物炭的作用。
Chemosphere Pub Date : 2024-09-01 Epub Date: 2024-07-17 DOI: 10.1016/j.chemosphere.2024.142893
Junhao Chen, Linye Jiang, Yixin Zhang, Ying Sun
{"title":"Fate of antibiotic resistance genes and roles of biochar in wastewater treated with biochar/persulfate.","authors":"Junhao Chen, Linye Jiang, Yixin Zhang, Ying Sun","doi":"10.1016/j.chemosphere.2024.142893","DOIUrl":"10.1016/j.chemosphere.2024.142893","url":null,"abstract":"<p><p>Advanced oxidation processes based on persulfate activation by biochar have been widely used to remove antibiotics and antibiotic resistance genes (ARGs) from wastewater. In this study, we used a common continuous fixed-bed reactor based on a biochar/persulfate system to treat wastewater. The average apparent ARG-removal efficiency was 82.38% in the biochar/persulfate reactor. The results of continuous reactor activity suggested the presence of ARG residues in the biochar (the abundance of ARG in the biochar increased 10<sup>3</sup>-fold) and unstable removal of extracellular ARGs, raising concerns about a potential environmental burden. Kinetic experiments showed that the absolute abundance of intracellular ARGs (iARGs) rapidly decreased 98.3% within 30 min, but extracellular ARGs (eARGs) correspondingly increased 15-fold, suggesting that persulfate broke bacterial cells open and quickly released iARGs as eARGs. Moreover, the proportions of the three types of ARGs showed that ARG removal was attributed to about 70% degradation and 30% adsorption by the biochar/persulfate reactor. Further analysis revealed that biochar acts as a special shelter for ARGs. Release experiment of used biochar indicated that nearly half of absorbed ARGs could be released into new environment and causing potential risk. Overall, our findings provide a fundamental understanding of the fate of ARGs during treatment of antibiotic-contaminated wastewater and new insights into the multiple roles of biochar, which can potentially represent an additional burden on ecosystems and human health.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the anammox microbial community succession with humic acid exposure to optimize large anammox granules for robust nitrogen removal. 解密anammox微生物群落与腐殖酸接触的演替,优化大型anammox颗粒,实现强效脱氮。
Chemosphere Pub Date : 2024-09-01 Epub Date: 2024-07-20 DOI: 10.1016/j.chemosphere.2024.142905
Changqing Liu, Jianghua Yu, Xinxin Zhu, Haoqian Shi, Xin Wang, Dongxiao Sun, Zhiqiang Dong, Yijing Zhu
{"title":"Deciphering the anammox microbial community succession with humic acid exposure to optimize large anammox granules for robust nitrogen removal.","authors":"Changqing Liu, Jianghua Yu, Xinxin Zhu, Haoqian Shi, Xin Wang, Dongxiao Sun, Zhiqiang Dong, Yijing Zhu","doi":"10.1016/j.chemosphere.2024.142905","DOIUrl":"10.1016/j.chemosphere.2024.142905","url":null,"abstract":"<p><p>The robustness of the anaerobic ammonia oxidation (anammox) process in treating wastewater with high concentrations of humic acids (HAs), including landfill leachate and sludge anaerobic digestion liquid, has been paid great attention. This study revealed that the anammox sludge granule size of 1.0-2.0 mm could be robust under the HA exposure with high concentrations. The total nitrogen removal efficiency (NRE) was 96.2% at the HA concentration of 20-100 mg/L, while the NRE was 88.5% at the HA concentration of 500 mg/L, with reduced by 7.7%. The increased extracellular polymeric substances (EPS) content which was stimulated by the HA exposure favored the formation of large granules (1.0-2.0 mm) by enveloping medium and micro granules (0.2-1.0 mm). The abundance of anammox bacteria Candidatus Brocadia was found to be higher (14.2%) in large anammox granules sized 1.0-2.0 mm, suggesting a potentially high anammox activity. However, the abundance of denitrifiers Denitratisoma increased by 4.3% in ultra-large anammox granules sized >2.0 mm, which could be attributed to the high EPS content for heterotrophic denitrifiers metabolism as organic matter. The feedback mechanism of the anammox community for maintaining the ecological function under the HA exposure resulted in a closely related microbial community, with positive and negative correlations in the ecological network increased by 64.3%. This study revealed that the HA exposure of the anammox system resulted in the anammox granules of 1.0-2.0 mm size being the dominant granules with robust nitrogen removal, providing significant guidance for the optimization of anammox granules for an efficient treatment of HA-containing wastewater in anammox applications.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyethylene terephthalate (PET) microplastics as radionuclide (U-232) carriers: Surface alteration matters the most. 作为放射性核素(铀-232)载体的聚对苯二甲酸乙二酯(PET)微塑料:表面改变最为重要。
Chemosphere Pub Date : 2024-09-01 Epub Date: 2024-07-29 DOI: 10.1016/j.chemosphere.2024.142970
Ioannis Ioannidis, Vaia Kokonopoulou, Ioannis Pashalidis
{"title":"Polyethylene terephthalate (PET) microplastics as radionuclide (U-232) carriers: Surface alteration matters the most.","authors":"Ioannis Ioannidis, Vaia Kokonopoulou, Ioannis Pashalidis","doi":"10.1016/j.chemosphere.2024.142970","DOIUrl":"10.1016/j.chemosphere.2024.142970","url":null,"abstract":"<p><p>Polyethylene terephthalate (PET) plastics find widespread use in various aspects of our daily lives but often end up in the environment as (micro)plastic waste. In this study, the adsorption efficiency of PET microplastics for U-232 has been investigated prior and after surface alteration (e.g. oxidation (PET-ox), MnO<sub>2</sub>-coating (PET/MnO<sub>2</sub>) and biofilm-formation (PET/Biofilm)) in the laboratory (at pH 4, 7 and 9) and seawater samples under ambient conditions and as a function of temperature. The results revealed a significant increase in the adsorption efficiency upon surface alteration, particularly after biofilm development on the MP's surface. Specifically, the K<sub>d</sub> values evaluated for the adsorption of U-232 by PET, PET-ox, PET/MnO<sub>2</sub> and PET/Biofilm are 12, 27, 73 and 363, respectively, at pH 7 and under ambient conditions. The significantly higher adsorption efficiency of the altered and particularly biofilm-coated PET, emphasizes the significance of surface alteration, which may occur under environmental conditions. In addition, according to the thermodynamic investigations the adsorption of U-232 by PET-MPs (both non-treated and modified), the adsorption is an endothermic and entropy-driven reaction. A similar behavior has been also observed using seawater solutions and assumes that surface alteration is expected to enhance the radionuclide, stability, mobility and bioavailability in environmental water systems.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation and application of quorum sensing on anaerobic digestion system. 厌氧消化系统中法定人数感应的调节和应用。
Chemosphere Pub Date : 2024-09-01 Epub Date: 2024-07-30 DOI: 10.1016/j.chemosphere.2024.142983
Liyan He, Gefu Zhu
{"title":"Regulation and application of quorum sensing on anaerobic digestion system.","authors":"Liyan He, Gefu Zhu","doi":"10.1016/j.chemosphere.2024.142983","DOIUrl":"10.1016/j.chemosphere.2024.142983","url":null,"abstract":"<p><p>Quorum sensing (QS) plays an important role in the social behavior of microbial communities. Anaerobic digestion (AD) is a biological process using anaerobic microorganisms to degrade organic macromolecules into small molecules for biogas and biofertilizer production. In AD, the QS signaling molecule N-acyl homoserine lactones (AHLs) induces bacterial metabolism, improving AD process efficiency. However, there are fewer systematic reports about QS regulation of microbial behavior in AD. In this report, the effects of signaling molecules on extracellular polymer secretion, biofilm formation, granulation of granular sludge and bacterial metabolism in AD were investigated in detail. At present, the regulation behavior of QS on AD is a group phenomenon, and there are few in-depth studies on the regulation pathway. Therefore, we conducted an in-depth analysis of the pure culture system, granular sludge and reactor in the AD. Then we pointed out that the future application potential of QS in the AD may be combined with quorum quenching (QQ) and omics technology, which is of great significance for the future application of AD.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of fungal-based microbial fuel cells for biodegradation of pharmaceuticals: Comparative study of individual vs. mixed contaminant solutions. 基于真菌的微生物燃料电池在药物生物降解中的应用:单独与混合污染物溶液的比较研究。
Chemosphere Pub Date : 2024-09-01 Epub Date: 2024-07-14 DOI: 10.1016/j.chemosphere.2024.142849
Melody Gorin, Mehri Shabani, Sébastien Votat, Laurent Lebrun, Serge Foukmeniok Mbokou, Maxime Pontié
{"title":"Application of fungal-based microbial fuel cells for biodegradation of pharmaceuticals: Comparative study of individual vs. mixed contaminant solutions.","authors":"Melody Gorin, Mehri Shabani, Sébastien Votat, Laurent Lebrun, Serge Foukmeniok Mbokou, Maxime Pontié","doi":"10.1016/j.chemosphere.2024.142849","DOIUrl":"10.1016/j.chemosphere.2024.142849","url":null,"abstract":"<p><p>The present study focuses on the application of fungal-based microbial fuel cells (FMFC) for the degradation of organic pollutants including Acetaminophen (APAP), Para-aminophenol (PAP), Sulfanilamide (SFA), and finally Methylene Blue (MB). The objective is to investigate the patterns of degradation (both individually and as a mixture solution) of the four compounds in response to fungal metabolic processes, with an emphasis on evaluating the possibility of generating energy. Linear Sweep Voltammetry (LSV) has been used for electrochemical analysis of the targeted compounds on a Glassy Carbon Electrode (GCE). A dual chamber MFC has been applied wherein the cathodic compartment, the reduction reaction of oxygen was catalyzed by an elaborated biofilm of Trametes trogii, and the anodic chamber consists of a mixed solution of 200 mg L<sup>-1</sup> APAP, PAP, MB, and SFA in 0.1 M PBS and an elaborated biofilm of Trichoderma harzianum. The obtained results showed that all the tested molecules were degraded over time by the Trichoderma harzianum. The biodegradation kinetics of all the tested molecules were found to be in the pseudo-first-order. The results of half-lives and the degradation rate reveal that APAP in its individual form degrades relatively slower (0.0213 h<sup>-1</sup>) and has a half-life of 33 h compared to its degradation in a mixed solution with a half-life of 20 h. SFA showed the longest half-life in the mixed condition (98 h) which is the opposite of its degradation as individual molecules (20 h) as the fastest molecule compared to other pollutants. The maximum power density of the developed MFC dropped from 0.65 mW m<sup>-2</sup> to 0.32 mW m<sup>-2</sup> after 45.5 h, showing that the decrease of the residual concentration of molecules in the anodic compartment leads to the decrease of the MFC performance.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141621949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid process combining ultrafiltration and electro-oxidation for COD and nonylphenol ethoxylate removal from industrial laundry wastewater. 超滤和电氧化相结合的混合工艺用于去除工业洗衣废水中的 COD 和壬基酚乙氧基化物。
Chemosphere Pub Date : 2024-09-01 Epub Date: 2024-07-23 DOI: 10.1016/j.chemosphere.2024.142931
Mahdieh Khajvand, Patrick Drogui, Hamed Arab, Rajeshwar Dayal Tyagi, Emmanuel Brien
{"title":"Hybrid process combining ultrafiltration and electro-oxidation for COD and nonylphenol ethoxylate removal from industrial laundry wastewater.","authors":"Mahdieh Khajvand, Patrick Drogui, Hamed Arab, Rajeshwar Dayal Tyagi, Emmanuel Brien","doi":"10.1016/j.chemosphere.2024.142931","DOIUrl":"10.1016/j.chemosphere.2024.142931","url":null,"abstract":"<p><p>Laundry wastewater is a significant source of nonylphenol ethoxylate (NPEO) at wastewater treatment plants, where its breakdown forms persistent nonylphenol (NP). NP poses risks as an endocrine disruptor in wildlife and humans. This study investigates the degradation of NPEO and COD in industrial laundry wastewater (LWW) using a two-stage process combining ultrafiltration (UF) and electro-oxidation (EO). UF was used to remove suspended solids, while soluble COD (COD<sub>0</sub> = 239 ± 6 mg.L<sup>-1</sup>) and NPEO (NPEO<sub>0</sub> = 341 ± 8 μg.L<sup>-1</sup>) were oxidized by the EO process. Different operating parameters were studied such as current density, electrolysis time, type of cathode and supporting electrolyte concentration. Using an experimental design methodology, the optimal conditions for COD and NPEO<sub>3-17</sub> degradation were recorded. This included achieving 97% degradation of NPEO<sub>3-17</sub> and 61% degradation of COD, with a total operating cost of 3.65 USD·m<sup>-3</sup>. These optimal conditions were recorded at a current density of 15 mA cm<sup>-2</sup> for a 120-min reaction period in the presence of 4 g·Na<sub>2</sub>SO<sub>4</sub> L<sup>-1</sup> using a graphite cathode. The EO process allowed for reaching the guidelines required for water reuse (NPEO <200 μg.L<sup>-1</sup>, COD <100 mg.L<sup>-1</sup>) in the initial laundry washing cycles. Furthermore, our results demonstrate that both NP and NPEO compounds, including higher and shorter ethoxylate chains (NPEO<sub>3-17</sub>), were effectively degraded during the EO process, with removal efficiencies between 94% and 98%. This confirms the EO process's capability to effectively degrade NP, the by-product of NPEO breakdown.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane fouling analysis of air-gap membrane distillation (AGMD) for recovery of water and removal of antibiotics from a model wastewater containing antibiotics and humic acid. 气隙膜蒸馏(AGMD)用于从含抗生素和腐植酸的模型废水中回收水和去除抗生素的膜堵塞分析。
Chemosphere Pub Date : 2024-09-01 Epub Date: 2024-07-24 DOI: 10.1016/j.chemosphere.2024.142942
Pyae Phyo Kywe, Chavalit Ratanatamskul
{"title":"Membrane fouling analysis of air-gap membrane distillation (AGMD) for recovery of water and removal of antibiotics from a model wastewater containing antibiotics and humic acid.","authors":"Pyae Phyo Kywe, Chavalit Ratanatamskul","doi":"10.1016/j.chemosphere.2024.142942","DOIUrl":"10.1016/j.chemosphere.2024.142942","url":null,"abstract":"<p><p>The study investigates the efficiency of air-gap membrane distillation (AGMD) in water recovery and antibiotics removal from wastewater, focusing on high-concentration scenarios. Experimental findings reveal enhanced membrane performance with increasing the feed temperature, resulting in vapor permeate fluxes of up to 5 kg/m<sup>2</sup>.h at higher temperatures. Despite experiencing flux reduction caused by fouling from humic acid (HA) in the feed antibiotics solution, the antibiotics consistently maintain near-complete rejection rates (>99%) over 48 h. The foulant on the membrane surface was illustrated by SEM imaging. To know the temperature polarization and the fouling resistance, mathematical modeling was used, and it validates experimental results, elucidating temperature polarization effects and mass transfer coefficients. An increase in feed flow rates reduced thermal boundary layers, enhancing heat flux. Higher temperatures reduced HA fouling resistance. Therefore, AGMD proves effective in water recovery and antibiotics removal, with mathematical models aiding fouling understanding for future research and detailed computational fluid dynamics (CFD) models.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decolorization and detoxification of direct blue 5B by a Marinobacter-dominated halo-thermoalkalophilic consortium. 以马林杆菌为主的嗜卤嗜碱菌群对直接蓝 5B 的脱色和解毒作用。
Chemosphere Pub Date : 2024-09-01 Epub Date: 2024-07-31 DOI: 10.1016/j.chemosphere.2024.142957
Shuxian Dang, Weihua Fan, Fanyun Meng, Xiangjin Li, Jiuxiao Hao, Chongyang Wang
{"title":"Decolorization and detoxification of direct blue 5B by a Marinobacter-dominated halo-thermoalkalophilic consortium.","authors":"Shuxian Dang, Weihua Fan, Fanyun Meng, Xiangjin Li, Jiuxiao Hao, Chongyang Wang","doi":"10.1016/j.chemosphere.2024.142957","DOIUrl":"10.1016/j.chemosphere.2024.142957","url":null,"abstract":"<p><p>Azo dye-containing sewage is commonly detected at high salinity, temperature and pH. In this study, a halo-thermoalkalophilic azo dye decolorization consortium was enriched and named \"consortium HL\". Consortium HL which was dominated by Marinobacter (84.30%), Desulfocurvibacter (1.89%), and Pseudomonas (1.85%), was able to completely decolorize Direct Blue 5B (DB5) during incubation with the material at 5% salinity, 50 °C, and pH 9 for 30 h. The decolorization mechanism was proposed based on combined metagenomic analysis, GC‒MS, and enzymatic activity detection. The action of the consortium HL showed great tolerance to variations in salinity, temperature and pH. A phytotoxicity study indicated that the metabolic intermediates showed no significant toxicity to the generation of Cucumis sativus and Oryza sativa seeds. This study, in which azo dye decolorization and degradation under high-salt, high-temperature and high-alkalinity conditions were investigated and deeply analyzed by metagenomic information, is the first report regarding the ability of Marinobacter to decolorize azo dyes at high temperatures.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Aqueous PM2.5 promotes lipid accumulation, classical macrophage polarisation and heat shock response" [Chemosphere 363 (2024)]. 水溶液 PM2.5 促进脂质积累、经典巨噬细胞极化和热休克反应 "的更正 [Chemosphere 363 (2024)].
Chemosphere Pub Date : 2024-09-01 DOI: 10.1016/j.chemosphere.2024.143196
Lílian Corrêa Costa-Beber, Rafael Kazmirczak Moraes, Jéssica Marques Obelar Ramos, Leo Anderson Meira Martins, Ana Laura Toquetto, Júlia Fursel Pacheco, Hémelin Resende Farias, Adriana Gioda, Vitor Antunes de Oliveira, Jade de Oliveira, Fatima Theresinha Costa Rodrigues Guma
{"title":"Corrigendum to \"Aqueous PM<sub>2.5</sub> promotes lipid accumulation, classical macrophage polarisation and heat shock response\" [Chemosphere 363 (2024)].","authors":"Lílian Corrêa Costa-Beber, Rafael Kazmirczak Moraes, Jéssica Marques Obelar Ramos, Leo Anderson Meira Martins, Ana Laura Toquetto, Júlia Fursel Pacheco, Hémelin Resende Farias, Adriana Gioda, Vitor Antunes de Oliveira, Jade de Oliveira, Fatima Theresinha Costa Rodrigues Guma","doi":"10.1016/j.chemosphere.2024.143196","DOIUrl":"10.1016/j.chemosphere.2024.143196","url":null,"abstract":"","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信