ChemospherePub Date : 2025-02-01Epub Date: 2024-12-28DOI: 10.1016/j.chemosphere.2024.143862
Ming Li, Yang Wang, Zhangfeng Shen, Mingshu Chi, Chen Lv, Chenyang Li, Li Bai, Hamdy Khamees Thabet, Salah M El-Bahy, Mohamed M Ibrahim, Lai Fatt Chuah, Pau Loke Show, Xiaolin Zhao
{"title":"Retraction notice to \"Investigation on the evolution of hydrothermal biochar\"[Chemosphere 307 (2022) 135774].","authors":"Ming Li, Yang Wang, Zhangfeng Shen, Mingshu Chi, Chen Lv, Chenyang Li, Li Bai, Hamdy Khamees Thabet, Salah M El-Bahy, Mohamed M Ibrahim, Lai Fatt Chuah, Pau Loke Show, Xiaolin Zhao","doi":"10.1016/j.chemosphere.2024.143862","DOIUrl":"10.1016/j.chemosphere.2024.143862","url":null,"abstract":"<p><p>This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).<This article has been retracted at the request of the Editors-in-Chief. A journal-wide investigation by Elsevier's Research Integrity & Publishing Ethics team identified violations of the journal's policies on authorship and conflict of interest related to the submission and review of this paper. Multiple authorship changes were made during the revision of this paper; two authors were removed and the authors Hamdy Khamees Thabet, Salah M. El-Bahy, Mohamed M. Ibrahim were added to the revised paper without validation or authorisation. In addition, review of this submission was handled by Guest Editor Kuan Shiong Khoo despite an extensive record of collaboration, including co-publication, with one of the paper co-authors (Pau Loke Show). This compromised the editorial process and breached the journal's policies. The authors disagree with this retraction and dispute the grounds for it.>.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143862"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2025-02-01Epub Date: 2024-12-31DOI: 10.1016/j.chemosphere.2024.144042
Sunmi Yang, Jiyun Gwak, Mungi Kim, Jihyun Cha, Youngnam Kim, Yeonjung Lee, Hyo-Bang Moon, Seongjin Hong
{"title":"Spatial and vertical distribution of per- and polyfluoroalkyl substances (PFASs) in the water columns of the regional seas of South Korea.","authors":"Sunmi Yang, Jiyun Gwak, Mungi Kim, Jihyun Cha, Youngnam Kim, Yeonjung Lee, Hyo-Bang Moon, Seongjin Hong","doi":"10.1016/j.chemosphere.2024.144042","DOIUrl":"10.1016/j.chemosphere.2024.144042","url":null,"abstract":"<p><p>This study focused on analyzing the spatial and vertical distributions of 28 per- and polyfluoroalkyl substances (PFASs), which comprised five precursors and three alternatives, in the water columns of the regional seas surrounding South Korea, such as the Yellow Sea (YS, Y1-Y10), East China Sea (ECS, EC1-EC6), South Sea (SS, S1-S5), and East Sea (ES, E1-E7). The concentrations of these PFASs detected in 204 seawater samples varied from below the limit of detection (<LOD) to 17 ng L<sup>-1</sup> in the YS, 0.26-17 ng L<sup>-1</sup> in the ECS, 0.08-3.4 ng L<sup>-1</sup> in the SS, and <LOD to 1.4 ng L<sup>-1</sup> in the ES, with perfluorooctanoic acid being identified as the most abundant compound. Principal component analysis grouped water masses and regions based on PFASs concentrations and compositions, enabling the identification of PFASs sources and their fate. PFASs are mainly derived from land and are transported via ocean currents, where their compositions tend to remain conservative. PFASs entering the YS are likely conveyed to the ES through ECS and SS, following the northward movement of the Taiwan Warm Current and Kuroshio Current. The ECS serves as a mixing zone for PFASs from various sources. This study provides valuable baseline data for understanding PFASs transport and the characteristics of water masses in the regional seas around South Korea.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"144042"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2025-02-01Epub Date: 2025-01-11DOI: 10.1016/j.chemosphere.2024.144052
Alireza Ranjbari, Keshab Kumar Adhikary, Muhammad Kashif, Alireza Pourvahabi Anbari, Tatwadhika Rangin Siddhartha, Doyun Kim, Seojin Yoon, Juan Yoon, Philippe M Heynderickx
{"title":"Comparative photocatalytic degradation of cationic rhodamine B and anionic bromocresol green using reduced ZnO: A detailed kinetic modeling approach.","authors":"Alireza Ranjbari, Keshab Kumar Adhikary, Muhammad Kashif, Alireza Pourvahabi Anbari, Tatwadhika Rangin Siddhartha, Doyun Kim, Seojin Yoon, Juan Yoon, Philippe M Heynderickx","doi":"10.1016/j.chemosphere.2024.144052","DOIUrl":"10.1016/j.chemosphere.2024.144052","url":null,"abstract":"<p><p>The photocatalytic degradation of rhodamine B (RhB), a cationic dye, and bromocresol green (BCG), an anionic dye, was investigated using oxygen vacancy-enriched ZnO as the catalyst. These dyes were selected due to their differing charges and molecular structures, allowing for a deeper exploration of how these characteristics impact the degradation process. The catalyst was prepared by reducing ZnO with 10% H<sub>2</sub>/Ar gas at 500 °C, and the introduction of oxygen vacancies was confirmed using various characterization techniques. A detailed kinetic model was developed to track dye degradation, accounting for adsorption and photocatalytic degradation simultaneously, both in solution and on the catalyst surface. The model incorporated the effect of pH on adsorption by considering the dissociation behavior of the dyes and their respective pK<sub>a</sub> values. The study revealed that degradation primarily occurs on the catalyst surface at acidic pH, while at basic pH, degradation is more pronounced in the solution. DFT calculations supported these findings, showing that the electrostatic potential of the dyes shifts depending on pH, influencing their interaction with hydroxyl radicals or the catalyst surface. Quantum yield calculations indicate peak values of 6.32 10<sup>-5</sup> molecules per photon for RhB at pH 11, and 4.20 10<sup>-5</sup> for BCG at pH 3.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"144052"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2025-02-01Epub Date: 2025-01-06DOI: 10.1016/j.chemosphere.2024.144050
Noha Amaly, Scott Harrison, Jaya Shankar Tumuluru, Gang Sun, Pramod K Pandey
{"title":"Development and application of a polycationic soybean protein-based flocculant for enhanced flocculation and dewatering of dairy manure.","authors":"Noha Amaly, Scott Harrison, Jaya Shankar Tumuluru, Gang Sun, Pramod K Pandey","doi":"10.1016/j.chemosphere.2024.144050","DOIUrl":"10.1016/j.chemosphere.2024.144050","url":null,"abstract":"<p><p>In agricultural and waste management systems, dairy manure wastewater is often recycled for irrigation. However, a key challenge lies in handling suspended solids (SS) and effectively dewatering sludge. To address this, an innovative polycationic soybean protein-based flocculant (SPI+) was developed and applied to enhance flocculation and sludge dewatering efficiency. The polycationic protein chains of SPI+ were synthesized by grafting 2-(methacryloyloxy)ethyl trimethylammonium chloride (META) monomers onto soybean protein isolate (SPI) chains using an energy-efficient thiol-ene photografting method. This approach achieved a grafting ratio of 85%, endowing the SPI+ with a stable and strong positive zeta-potential (+30 mV) across a range of pH conditions. The SPI + exhibited exceptional flocculation performance, achieving a 96% flocculation efficiency, reducing sludge filtration resistance by 55%, and lowering filter cake moisture content by 10%. The SPI + flocculation and dewatering performance is comparable with synthetic-based commercial flocculant. This remarkable performance of SPI+ is attributed to its ability to effectively neutralize charges, form robust inter-particle bridges, and interact strongly with extracellular polymeric substances (EPS), particularly their protein components, within the sludge matrix. These properties significantly enhance both sludge aggregation and dewaterability. The underlying mechanisms of flocculation and dewatering were further elucidated using confocal imaging, surface morphology analysis of flocs, and quantification of EPS protein and polysaccharide content, providing valuable insights into its functional efficacy.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"144050"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2025-02-01Epub Date: 2025-01-03DOI: 10.1016/j.chemosphere.2024.144023
Corey S Green, Jeffrey M Morris, Jason T Magnuson, Rachel R Leads, Claire R Lay, Michel Gielazyn, Lisa Rosman, Daniel Schlenk, Aaron P Roberts
{"title":"Exposure to the Polychlorinated biphenyl mixture Aroclor 1254 elicits neurological and cardiac developmental effects in early life stage zebrafish (Danio rerio).","authors":"Corey S Green, Jeffrey M Morris, Jason T Magnuson, Rachel R Leads, Claire R Lay, Michel Gielazyn, Lisa Rosman, Daniel Schlenk, Aaron P Roberts","doi":"10.1016/j.chemosphere.2024.144023","DOIUrl":"10.1016/j.chemosphere.2024.144023","url":null,"abstract":"<p><p>The goal of this study was to compare the bioaccumulation of the PCB mixture Aroclor 1254 in zebrafish to cardiac and neurologic outcomes. The establishment of effect concentrations (ECs) for cardiac and neurotoxic effects of PCBs in early life stage fish is challenging due to a lack of measured PCB concentrations in test media (e.g., fish tissue), the lack of standard exposure methods, and the propensity of PCBs to adsorb to test glassware and materials resulting in discrepancies in ECs from different studies with similar endpoints. Reporting tissue concentrations in test organisms will allow for standardization across different tests and thus may improve estimations of effect thresholds. Early life stage zebrafish (Danio rerio) are a common environmental toxicological model well represented within the literature, making them ideal for comparisons across multiple studies. Embryos were exposed at 6 h post fertilization (hpf) to aqueous Aroclor 1254 for 96 h with or without renewal in addition to a PCB 126 positive control for cardiotoxicity. PCB concentrations were measured in both exposure solutions and tissue samples. Measured concentrations of Aroclor 1254 in test solutions ranged from 8.7% to 870% of nominal concentrations. Heart rate, pericardial edema, and neurological endpoints (eye tremors) were measured in 102 hpf larvae. Pericardial edema was not present in Aroclor 1254-treated zebrafish but was observed in those exposed to PCB-126. Concentration-dependent bradycardia was observed in zebrafish exposed to Aroclor 1254 and PCB-126. Similarly, a concentration-dependent increase in eye tremor behavior was observed in embryos exposed to Aroclor 1254. Data produced by this study demonstrate novel toxicological effects of Aroclor 1254 and highlight the importance of measuring PCBs in both exposure and receptor media.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"144023"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2025-02-01Epub Date: 2024-12-10DOI: 10.1016/j.chemosphere.2024.143894
Mackenzie L Morshead, Lisa Truong, Michael T Simonich, Jessica E Moran, Kim A Anderson, Robyn L Tanguay
{"title":"Developmental toxicity of alkylated PAHs and substituted phenanthrenes: Structural nuances drive diverse toxicity and AHR activation.","authors":"Mackenzie L Morshead, Lisa Truong, Michael T Simonich, Jessica E Moran, Kim A Anderson, Robyn L Tanguay","doi":"10.1016/j.chemosphere.2024.143894","DOIUrl":"10.1016/j.chemosphere.2024.143894","url":null,"abstract":"<p><p>Polycyclic aromatic hydrocarbons (PAHs) are a diverse class of chemicals that occur in complex mixtures including parent and substituted PAHs. To understand the hazard posed by complex environmental PAH mixtures, we must first understand the structural drivers of activity and mode of action of individual PAHs. Understanding the toxicity of alkylated PAHs is important as they often occur in higher abundance in environmental matrices and can be more biologically active than their parent compounds. 104 alkylated PAHs were screened from 11 different parent compounds with emphasis on substituted phenanthrenes and their structurally dependent toxicity differences. Using a high-throughput early life stage zebrafish assay, embryos were exposed to concentrations between 0.1 and 100 μM and assessed for morphological and behavioral outcomes. The aryl hydrocarbon receptor (AHR) is often implicated in the toxicity of PAHs and the induction of cytochrome P4501A (cyp1a) is an excellent biomarker of Ahr activation. Embryos were evaluated for cyp1a induction using a fluorescence reporter line. Alkyl and polar phenanthrene derivatives were further assessed for spatial cyp1a expression and Ahr dependence of morphological effects. In the alkyl PAH screen 35 (33.7%) elicited a morphological or behavioral response and of those 23 (65%) also induced cyp1a. 31 (29.8%) of the chemicals only induced cyp1a. Toxicity varied substantially in response to substitution location, the amount of ring substitutions and alkyl chain length. Cyp1a induction varied by parent compound group and was a poor indicator of morphological or behavioral outcomes. Polar phenanthrenes were more biologically active than alkylated phenanthrene derivatives and their toxicity was not dependent upon the Ahr2, Ahr1a or Ahr1b when tested individually, despite cyp1a induction by 50% of polar phenanthrenes. Our results demonstrated that induction of cyp1a did not always correlate with PAH toxicity or Ahr dependence and that the type and location of phenanthrene substitution determined potency.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143894"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2025-02-01Epub Date: 2024-12-15DOI: 10.1016/j.chemosphere.2024.143903
Megan Liu, Sicco H Brandsma, Erika Schreder
{"title":"Corrigendum to 'From e-waste to living space: Flame retardants contaminating household items add to concern about plastic recycling' [Chemosphere 365 (2024) 143319].","authors":"Megan Liu, Sicco H Brandsma, Erika Schreder","doi":"10.1016/j.chemosphere.2024.143903","DOIUrl":"10.1016/j.chemosphere.2024.143903","url":null,"abstract":"","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143903"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142831085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2025-02-01Epub Date: 2024-12-14DOI: 10.1016/j.chemosphere.2024.143823
Nguyen-Sy Toan, Do Hong Hanh, Nguyen Thi Dong Phuong, Phan Thi Thuy, Pham Duy Dong, Nguyen Thanh Gia, Le Duc Tam, Tran Thi Ngoc Thu, Do Thi Van Thanh, Kuan Shiong Khoo, Pau Loke Show
{"title":"Retraction notice to \"Effects of burning rice straw residue on-field on soil organic carbon pools: Environment-friendly approach from a conventional rice paddy in central Viet Nam\"[Chemosphere 294 (2022) 133596].","authors":"Nguyen-Sy Toan, Do Hong Hanh, Nguyen Thi Dong Phuong, Phan Thi Thuy, Pham Duy Dong, Nguyen Thanh Gia, Le Duc Tam, Tran Thi Ngoc Thu, Do Thi Van Thanh, Kuan Shiong Khoo, Pau Loke Show","doi":"10.1016/j.chemosphere.2024.143823","DOIUrl":"10.1016/j.chemosphere.2024.143823","url":null,"abstract":"","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143823"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemospherePub Date : 2025-02-01Epub Date: 2024-12-22DOI: 10.1016/j.chemosphere.2024.143966
Wenbo You, Linyunuo Lai, Jiahui Li, Yingying Zhao, Jie Tian, Liwu Zhang, Jia Hong Pan
{"title":"Encapsulation of fluorescent carbon dots into mesoporous SiO<sub>2</sub> colloidal spheres by surface functionalization-assisted cooperative assembly for high-contrast latent fingerprint development.","authors":"Wenbo You, Linyunuo Lai, Jiahui Li, Yingying Zhao, Jie Tian, Liwu Zhang, Jia Hong Pan","doi":"10.1016/j.chemosphere.2024.143966","DOIUrl":"10.1016/j.chemosphere.2024.143966","url":null,"abstract":"<p><p>Exploiting solid powder fluorescence holds significant potential in diverse domains including medicine and forensics. Conventional fingerprint detection methods often fall short due to low contrast, sensitivity, and high toxicity. To addressing these challenges, we present a novel method for latent fingerprint detection using fluorescent carbon dots (CDs) encapsulated into conventional or mesoporous SiO<sub>2</sub> colloidal spheres (CD@SiO<sub>2</sub> or CDs@m-SiO<sub>2</sub>) through a surface functionalization-assisted cooperative assembly process. The synthesized monodisperse CDs@SiO<sub>2</sub> and CDs@m-SiO<sub>2</sub> spheres, with tuning particle size, adjustable porosity and pore size, and highly dispersed CDs, exhibit improved fingerprint visibility and contrast on various substrates such as glass, stainless steel, and plastic. CDs located in SiO<sub>2</sub> with excellent affinity effectively avoids their solid-state self-quenching phenomenon, which, coupling with mesoporous SiO<sub>2</sub> shell, maximumly retains their fluorescence properties. Our method demonstrates a high contrast, selectivity, and sensitivity in fingerprint detection, offering an environmentally friendly and healthy alternative to conventional techniques, and showcasing a facile route to novel solid-state CDs-based fluorescent materials for forensic analysis.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143966"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142873146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}