William Santacruz, Julia Faria, Rodrigo De Mello, Maria Valnice Boldrin, Artur de Jesus Motheo
{"title":"Comparative study of MMO and BDD anodes for electrochemical degradation of diuron in methanol medium.","authors":"William Santacruz, Julia Faria, Rodrigo De Mello, Maria Valnice Boldrin, Artur de Jesus Motheo","doi":"10.1016/j.chemosphere.2024.143517","DOIUrl":null,"url":null,"abstract":"<p><p>Treating emerging pollutants at low concentrations presents significant challenges in terms of degradation efficiency. Anodic oxidation using active and non-active electrodes shows great potential for wastewater treatment. Thus, this study compared the efficiency of a commercial mixed metal oxide anode (MMO: Ti/Ti<sub>0.7</sub>Ru<sub>0.3</sub>O<sub>2</sub>) and a boron-doped diamond anode (BDD) for the electrochemical oxidation of diuron in methanol, in chloride and sulfate media. The MMO anode achieved diuron removal rates of 94.9% and 92.8% in chloride and sulfate media, respectively, with pseudo-first-order kinetic constants of 0.0177 and 0.0143 min<sup>-1</sup>. The BDD anode demonstrated slightly higher removal rates, achieving 96.2% in sulfate medium and 96.9% in chloride medium, with respective kinetic constants of 0.0193 min⁻<sup>1</sup> and 0.0177 min⁻<sup>1</sup>. Increasing the current density enhanced diuron removal by up to 15% for both electrodes; however, excessively high current densities led to increased energy consumption due to side reactions. The present of water had antagonistic effects, resulting in removal rates of 91.1% for chloride media using the BDD anode; and 87.4% and 90.4% in sulfate media with MMO and BDD anodes, respectively. The MMO anode in chloride medium did not show significant difference in the degradation percentage, reaching 96% of diuron removals. The degradation mechanism was proposed based on the detection of various by-products. The primary reactions observed during the oxidation of diuron in methanol involved chlorine substitution in the aromatic ring and dealkylation. These processes generated several intermediates and by-products at low concentrations, ultimately leading to high diuron removal.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Treating emerging pollutants at low concentrations presents significant challenges in terms of degradation efficiency. Anodic oxidation using active and non-active electrodes shows great potential for wastewater treatment. Thus, this study compared the efficiency of a commercial mixed metal oxide anode (MMO: Ti/Ti0.7Ru0.3O2) and a boron-doped diamond anode (BDD) for the electrochemical oxidation of diuron in methanol, in chloride and sulfate media. The MMO anode achieved diuron removal rates of 94.9% and 92.8% in chloride and sulfate media, respectively, with pseudo-first-order kinetic constants of 0.0177 and 0.0143 min-1. The BDD anode demonstrated slightly higher removal rates, achieving 96.2% in sulfate medium and 96.9% in chloride medium, with respective kinetic constants of 0.0193 min⁻1 and 0.0177 min⁻1. Increasing the current density enhanced diuron removal by up to 15% for both electrodes; however, excessively high current densities led to increased energy consumption due to side reactions. The present of water had antagonistic effects, resulting in removal rates of 91.1% for chloride media using the BDD anode; and 87.4% and 90.4% in sulfate media with MMO and BDD anodes, respectively. The MMO anode in chloride medium did not show significant difference in the degradation percentage, reaching 96% of diuron removals. The degradation mechanism was proposed based on the detection of various by-products. The primary reactions observed during the oxidation of diuron in methanol involved chlorine substitution in the aromatic ring and dealkylation. These processes generated several intermediates and by-products at low concentrations, ultimately leading to high diuron removal.