Bioscience of microbiota, food and health最新文献

筛选
英文 中文
Soy sauce-like seasoning enhances the growth of Agathobacter rectalis and the production of butyrate, propionate, and lactate. 类似酱油的调味料能促进直肠农杆菌的生长以及丁酸盐、丙酸盐和乳酸盐的产生。
IF 2.5
Bioscience of microbiota, food and health Pub Date : 2024-01-01 Epub Date: 2024-04-29 DOI: 10.12938/bmfh.2023-103
Kanako Hayashi, Riichiro Uchida, Taro Horiba, Tomohiro Kawaguchi, Keiko Gomi, Yoshiyuki Goto
{"title":"Soy sauce-like seasoning enhances the growth of <i>Agathobacter rectalis</i> and the production of butyrate, propionate, and lactate.","authors":"Kanako Hayashi, Riichiro Uchida, Taro Horiba, Tomohiro Kawaguchi, Keiko Gomi, Yoshiyuki Goto","doi":"10.12938/bmfh.2023-103","DOIUrl":"10.12938/bmfh.2023-103","url":null,"abstract":"<p><p>The short-chain fatty acids responsible for gut homeostasis are volatile fatty acids produced by commensal bacteria in the gut as fermentation products from undigested food components. Among the short-chain fatty acids, butyrate is important for maintaining intestinal tract anaerobic conditions, promoting epithelial barrier functions, and inducing regulatory T cells that suppress inflammatory bowel disease and allergic diarrhea. However, the type of food-derived molecular components and mechanisms by which they regulate the growth and butyrate production of butyrate-producing bacteria are not clearly understood. <i>Agathobacter rectalis</i> is a butyrate-producing bacterium highly colonized in the gut of the Japanese population. In this study, we investigated the effects on <i>A. rectalis</i> of a soy sauce-like seasoning made by brewing with a low salt concentration. The soy sauce-like seasoning promoted the growth of <i>A. rectalis</i> 2.6-fold. An ethanol precipitate prepared from the soy sauce-like seasoning was critical for promoting the growth of <i>A. rectalis</i> and the production of butyrate, propionate, and lactate. Fourier transform infrared spectroscopy (FT-IR) analysis suggested that polysaccharides were active ingredients in the ethanol precipitate of the soy sauce-like seasoning. Inulin, a representative prebiotic with effects against butyrate-producing bacteria, had a limited effect on the growth of <i>A. rectalis</i> compared with the soy sauce-like seasoning. Our results indicate that polysaccharides in a soy sauce-like seasoning contributed to the growth of <i>A. rectalis</i> and enhanced production of butyrate, propionate, and lactate.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"43 3","pages":"275-281"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silk-derived sericin/fibroin mixture drink fermented with plant-derived Lactococcus lactis BM32-1 improves constipation and related microbiota: a randomized, double-blind, and placebo-controlled clinical trial. 用植物源乳球菌 BM32-1 发酵的丝胶/纤维素混合物饮料可改善便秘和相关微生物群:一项随机、双盲和安慰剂对照临床试验。
IF 2.5
Bioscience of microbiota, food and health Pub Date : 2024-01-01 Epub Date: 2024-05-07 DOI: 10.12938/bmfh.2023-102
Masafumi Noda, Narandalai Danshiitsoodol, Keishi Kanno, Masanori Sugiyama
{"title":"Silk-derived sericin/fibroin mixture drink fermented with plant-derived <i>Lactococcus lactis</i> BM32-1 improves constipation and related microbiota: a randomized, double-blind, and placebo-controlled clinical trial.","authors":"Masafumi Noda, Narandalai Danshiitsoodol, Keishi Kanno, Masanori Sugiyama","doi":"10.12938/bmfh.2023-102","DOIUrl":"10.12938/bmfh.2023-102","url":null,"abstract":"<p><p>We previously showed through clinical trials that one plant-derived lactic acid bacteria (LAB) can improve constipation. We preliminarily found that the plant-derived LAB <i>Lactococcus lactis</i> BM32-1 can grow in a mixture of sericin and fibroin, which are extracted from silk and have been reported to help promote health. Thus, in the present study, we evaluated the favorable effect of a sericin/fibroin mixture (S/F-M), which was extracted from silk prepared from cocoons reared in an aseptic rearing system using an artificial diet, fermented with the BM32-1 strain through a clinical trial. The trial was conducted at Hiroshima University from June to October 2022 as a double-blind, placebo-controlled, randomized parallel-group comparative study with 50 eligible subjects (aged 23-71) who had an average defecation frequency of less than 5 times per week. The subjects were instructed to drink 100 mL of fermented S/F-M or placebo every day. After the 12 weeks of the clinical trial period, the average defecation frequency increased significantly-1.4 times higher than that at baseline in the test group-as compared with the placebo group. Furthermore, the fecal microbiota was also compared before and after treatment, revealing that intake of the fermented S/F-M significantly multiplied the relative abundance of the genera <i>Enterococcus</i> and <i>Clostridium</i>, which have been reported to contribute to the amelioration of constipation by improving the gut microbiota and producing butyric acid, respectively. In conclusion, the S/F-M fermented using the BM32-1 strain improves defecation frequency through alteration of the gut microbiota.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"43 3","pages":"282-292"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220338/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-allergic effect of Cyclopia (honeybush) extracts via anti-degranulation activity in a murine allergy model for inhaled antigen. 在吸入抗原的小鼠过敏模型中,通过抗脱粒活性发挥 Cyclopia(蜜蜂草)提取物的抗过敏作用。
IF 2.5
Bioscience of microbiota, food and health Pub Date : 2024-01-01 Epub Date: 2024-03-18 DOI: 10.12938/bmfh.2023-105
Hitoshi Shimbo, Ayumi Fukagawa, Oji Nakamura, Shiho Murakami, Yutaka Miura, Makoto Hattori, Dalene DE Beer, Elizabeth Joubert, Tadashi Yoshida
{"title":"Anti-allergic effect of <i>Cyclopia</i> (honeybush) extracts via anti-degranulation activity in a murine allergy model for inhaled antigen.","authors":"Hitoshi Shimbo, Ayumi Fukagawa, Oji Nakamura, Shiho Murakami, Yutaka Miura, Makoto Hattori, Dalene DE Beer, Elizabeth Joubert, Tadashi Yoshida","doi":"10.12938/bmfh.2023-105","DOIUrl":"10.12938/bmfh.2023-105","url":null,"abstract":"<p><p>The anti-allergic effects of extracts prepared from two species of honeybush, <i>Cyclopia genistoides</i> and <i>Cyclopia subternata</i>, were demonstrated <i>in vivo</i> in a murine allergy model for inhaled antigen induced with ovalbumin (OVA) inhalation to mimic pollen allergy. Intake of the extracts increased the production of OVA-specific immunoglobulin (Ig) E (IgE), IgG1, and IgG2a antibodies in serum and significantly suppressed anaphylactic reaction-induced body temperature decline. Moreover, the extracts significantly inhibited antigen-antibody-induced degranulation in RBL-2H3 cells. They also inhibited body temperature decline when the allergic mice were given them after antigen sensitization, indicating that anti-degranulation activity is the major mechanism underlying the anti-allergic effect of <i>Cyclopia</i> extracts. Despite their qualitative and quantitative differences in phenolic composition, the two extracts exhibited similar effects, suggesting that several active compounds might be involved in the activity. Therefore, oral administration of either <i>Cyclopia</i> extract potentially exerts a systemic anti-allergic effect, supporting the increased consumption of honeybush tea for general wellness and improved quality of life.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"43 3","pages":"241-249"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of microRNAs in the crosstalk between the gut microbiota and intestinal immune system. 微小RNA在肠道微生物群和肠道免疫系统之间的相互作用。
Bioscience of microbiota, food and health Pub Date : 2023-01-01 Epub Date: 2023-05-01 DOI: 10.12938/bmfh.2023-027
Kei Sonoyama, Fumina Ohsaka
{"title":"Role of microRNAs in the crosstalk between the gut microbiota and intestinal immune system.","authors":"Kei Sonoyama,&nbsp;Fumina Ohsaka","doi":"10.12938/bmfh.2023-027","DOIUrl":"10.12938/bmfh.2023-027","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are small non-coding RNA species involved in diverse physiological processes, including immunity. Accumulating evidence suggests that miRNA-induced gene silencing plays a significant role in the regulation of the intestinal immune system by the gut commensal microbiota. This review aims to provide an overview of the intestinal miRNA-mediated crosstalk between the gut microbiota and the host intestinal immune system. First, we describe the role of miRNAs in regulating the intestinal immune system. Then we describe the effect of the gut microbiota on intestinal miRNA expression. Subsequently, we describe the role of miRNAs in the modulation of the intestinal immune system by the gut microbiota. Finally, we describe the effect of host miRNAs on the gut microbiota. Although the entire picture of this complex crosstalk remains unclear, efforts to unravel it will contribute significantly to developing new strategies for preventing and treating intestinal immune disorders such as inflammatory bowel disease.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"42 4","pages":"222-228"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c5/b2/bmfh-42-222.PMC10542430.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41165526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Microbial ecology between Clostridioides difficile and gut microbiota. 艰难梭菌和肠道微生物群之间的微生物生态学。
Bioscience of microbiota, food and health Pub Date : 2023-01-01 Epub Date: 2023-06-07 DOI: 10.12938/bmfh.2023-033
Shigeru Kamiya
{"title":"Microbial ecology between <i>Clostridioides difficile</i> and gut microbiota.","authors":"Shigeru Kamiya","doi":"10.12938/bmfh.2023-033","DOIUrl":"10.12938/bmfh.2023-033","url":null,"abstract":"<p><p><i>Clostridioides difficile</i> colonizes a polymicrobial environment in the intestine and is a causative agent for antibiotic-associated diarrhea (AAD) and pseudomembranous colitis (PMC). The most important virulence factors of <i>C. difficile</i> are bacterial toxins, and three toxins (toxin A, toxin B, and binary toxin) are produced by toxigenic strains. Other virulence factors include spores, flagella, capsules, biofilms, hydrolytic enzymes and adhesins. <i>C. difficile</i> infection (CDI) is specifically diagnosed by anaerobic culture and toxin detection by either nucleic acid amplification test (NAAT) or enzyme-linked immunosorbent assay (ELISA). For treatment of CDI, metronidazole, vancomycin and fidaxomicin are used based on the severity of CDI. Mutual interaction between <i>C. difficile</i> and gut microbiota is associated with pathogenesis of CDI, and decreased microbial diversity with altered gut microbiome was detected in CDI patients. Restoration of certain gut microbiota is considered to be potentially effective for the prevention and treatment of CDI, and an ideal goal for CDI patients is restoration of the gut microbiota to a healthy state. Fecal microbiota transplantation (FMT) is a highly successful method of microbiome restoration and has been reported to be effective for the prevention of recurrent CDI. In addition, approaches to restoring the gut microbiota by using probioitcs and live biotherapeutic products (LBPs) are currently being studied to examine the effect on CDI. Further microbial ecological research on <i>C. difficile</i> and gut microbiota could lead to a better understanding of the pathogenesis and treatment of CDI.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"42 4","pages":"229-235"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/21/db/bmfh-42-229.PMC10542429.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41160460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of D-amino acid in Japanese post-fermented tea, Ishizuchi-kurocha. 日本黑茶后发酵茶中D-氨基酸的分析。
Bioscience of microbiota, food and health Pub Date : 2023-01-01 Epub Date: 2023-06-28 DOI: 10.12938/bmfh.2023-005
Masanori Horie, Yoshihiro Ohmiya, Taketo Ohmori
{"title":"Analysis of D-amino acid in Japanese post-fermented tea, Ishizuchi-kurocha.","authors":"Masanori Horie,&nbsp;Yoshihiro Ohmiya,&nbsp;Taketo Ohmori","doi":"10.12938/bmfh.2023-005","DOIUrl":"10.12938/bmfh.2023-005","url":null,"abstract":"<p><p>The D-amino acid content of Ishizuchi-kurocha, a post-fermented tea produced in Ehime, Japan, was measured. Ishizuchi-kurocha mainly contains D-glutamic acid and D-alanine, but it also contains a small amount of D-aspartic acid. Two types of lactic acid bacteria, <i>Lactiplantibacillus plantarum</i> and <i>Levilactobacillus brevis</i>, are the main species involved in lactic acid fermentation during the tea fermentation process. Therefore, the D-amino acid-producing abilities of strains of these two species isolated from Ishizuchi-kurocha were examined. Specifically, the production of D-aspartic acid, D-alanine, and D-glutamic acid by <i>L. brevis</i> and <i>L. plantarum</i> strains was observed. The amount of D-aspartic acid produced by <i>L. plantarum</i> was low. D-glutamine was detected in culture supernatant but not in bacterial cells. D-arginine was detected in bacterial cells of the <i>L. plantarum</i> strains but not in the culture supernatant. Both the <i>L. brevis</i> and <i>L. plantarum</i> strains possessed at least three kinds of putative racemase genes: alanine racemase, glutamate racemase, and aspartate racemase. However, their expression and enzyme activity remain unknown. <i>L. plantarum</i> and <i>L. brevis</i> could play an important role in the production of D-amino acids in Ishizuchi-kurocha. In fact, Ishizuchi-kurocha is expected to possess the effective physiological activities of D-amino acids.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"42 4","pages":"254-263"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/37/ab/bmfh-42-254.PMC10542427.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41177618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of plant polysaccharides (Poria cocos and Astragalus polysaccharides) on immune responses and intestinal microbiota of Dabry's sturgeons. 植物多糖(茯苓和黄芪多糖)对达氏鲟免疫反应和肠道微生物群的影响。
Bioscience of microbiota, food and health Pub Date : 2023-01-01 Epub Date: 2023-06-13 DOI: 10.12938/bmfh.2022-089
Jianming Zhang, Debin Shu, Xu Cheng, Tian Tian, Kan Xiao, Dezhi Zhang, Jing Yang
{"title":"Effect of plant polysaccharides (<i>Poria cocos</i> and <i>Astragalus</i> polysaccharides) on immune responses and intestinal microbiota of Dabry's sturgeons.","authors":"Jianming Zhang,&nbsp;Debin Shu,&nbsp;Xu Cheng,&nbsp;Tian Tian,&nbsp;Kan Xiao,&nbsp;Dezhi Zhang,&nbsp;Jing Yang","doi":"10.12938/bmfh.2022-089","DOIUrl":"https://doi.org/10.12938/bmfh.2022-089","url":null,"abstract":"<p><p>Searching for non-toxic and harmless feed ingredients that can improve growth performance and host immunity has always been the focus of attention in the protected areas for artificially bred Dabry's sturgeons. The present study explored the effect of dietary <i>Poria cocos</i> and <i>Astragalus</i> polysaccharides on the antioxidant status, expression of immune related genes, and composition and putative functions of gut bacterial communities in Dabry's sturgeons for the first time. In this study, Dabry's sturgeons were randomly divided into 3 groups and fed diets of normal, <i>P. cocos</i> polysaccharide<i>-</i>added (200 mg/kg), and <i>Astragalus</i> polysaccharide-added (200 mg/kg) food for 14 days. The results indicated that dietary <i>Astragalus</i> polysaccharide can increase the final body weight of Dabry's sturgeon. Compared with normal breeding individuals, feeding diets containing the <i>P. cocos</i> and <i>Astragalus</i> polysaccharides up-regulated the activity of superoxide dismutase, lysozyme, catalase, and glutathione peroxidase while also decreasing the levels of malondialdehyde. In addition, the <i>Astragalus</i> polysaccharide group had higher gene expression of two inflammatory cytokines, tumor necrosis factor alpha and immunoglobulin M, than the control group. Analysis of intestinal microbiota revealed that the dietary <i>Astragalus</i> polysaccharide improved the richness and diversity of major gut microbiota in Dabry's sturgeons, while the structure in the <i>P. cocos</i> polysaccharide group was clearly distinguished from that of the control group. Our results preliminarily indicated that dietary supplementation of <i>P. cocos</i> and <i>Astragalus</i> polysaccharides may contribute to better performance in growth, development, and inflammatory response for Dabry's sturgeons, and they provide basic guidance for plant polysaccharide additives in artificial breeding of sturgeons.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"42 4","pages":"243-253"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6a/0f/bmfh-42-243.PMC10542428.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41171090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colchicine effects on the gut microbiome in adults with metabolic syndrome. 秋水仙碱对代谢综合征成人肠道微生物组的影响。
Bioscience of microbiota, food and health Pub Date : 2023-01-01 Epub Date: 2023-05-01 DOI: 10.12938/bmfh.2023-001
Celine M Kisimba, Jack L Donahue, Krishna Karthik Chivukula, Poorani Subramanian, Shreni D Mistry, Anna Wolska, Alan T Remaley, Jack A Yanovski, Andrew P Demidowich
{"title":"Colchicine effects on the gut microbiome in adults with metabolic syndrome.","authors":"Celine M Kisimba,&nbsp;Jack L Donahue,&nbsp;Krishna Karthik Chivukula,&nbsp;Poorani Subramanian,&nbsp;Shreni D Mistry,&nbsp;Anna Wolska,&nbsp;Alan T Remaley,&nbsp;Jack A Yanovski,&nbsp;Andrew P Demidowich","doi":"10.12938/bmfh.2023-001","DOIUrl":"https://doi.org/10.12938/bmfh.2023-001","url":null,"abstract":"<p><p>Obesity-induced inflammation plays a substantial role in the development of insulin resistance and type 2 diabetes. The altered gut flora in obesity can also contribute to metabolic dysregulation and systemic inflammation. However, it remains unclear how dysregulation of systemic inflammation in obesity affects the gut microbiome. We hypothesized that colchicine's systemic anti-inflammatory effects in obesity would be associated with improvements in gut microbial diversity. We conducted a secondary analysis of a double-blind randomized placebo-controlled trial, in which 40 adults with obesity, high C-reactive protein (CRP) (≥2.0 mg/L), insulin resistance (homeostatic model of insulin resistance: HOMA-IR ≥2.6 mg/L), and metabolic syndrome (MetS) were randomized to three months of colchicine 0.6 mg or placebo tablets twice daily. Serum and stool samples were collected at baseline and final visit. Gut microbiota composition was characterized from stool DNA by dual-index amplification and sequencing of 16S ribosomal RNA. Pre- and post-intervention stool samples were available for 15 colchicine- and 12 placebo-treated subjects. Circulating high sensitivity CRP (hsCRP), interleukin-6, resistin, white blood count, and neutrophils were significantly decreased in the colchicine arm as compared to placebo. However, changes in stool microbiome alpha diversity, as assessed by the Chao1, Shannon, and Pielou indices, were not significant between groups. Amplicon sequence variant counts were unchanged among all examined phyla or families. <i>Oscillibacter</i> was the only genus to demonstrate even a nominally significant change. Among adults with obesity and MetS, colchicine significantly improved systemic inflammation. However, this anti-inflammatory effect was not associated with significant changes in the gut microbiome. Further studies are warranted to investigate this relationship.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"42 4","pages":"236-242"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5f/3e/bmfh-42-236.PMC10542426.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41175326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信