Bioscience of microbiota, food and health最新文献

筛选
英文 中文
Regulation effect of the intestinal flora and intervention strategies targeting the intestinal flora in alleviation of pulmonary fibrosis development. 肠道菌群的调节作用和针对肠道菌群的干预策略在缓解肺纤维化发展中的作用。
IF 2.5
Bioscience of microbiota, food and health Pub Date : 2024-01-01 Epub Date: 2024-03-14 DOI: 10.12938/bmfh.2023-100
Jianquan Guo, Liyang Yang
{"title":"Regulation effect of the intestinal flora and intervention strategies targeting the intestinal flora in alleviation of pulmonary fibrosis development.","authors":"Jianquan Guo, Liyang Yang","doi":"10.12938/bmfh.2023-100","DOIUrl":"10.12938/bmfh.2023-100","url":null,"abstract":"<p><p>Pulmonary fibrosis is an end-stage respiratory disease characterized by fibroblast proliferation and accumulation of extracellular matrix and collagen, which is accompanied by inflammatory damage. The disease is mainly based on pulmonary dysfunction and respiratory failure, the incidence of it is increasing year by year, and the current treatment methods for it are limited. In recent years, it has been found that gut microbes play a crucial role in the pathogenesis and development of pulmonary fibrosis. The microecological disturbance caused by changes in the composition of the intestinal flora can affect the course of pulmonary fibrosis. The regulatory network or information exchange system for gut-lung crosstalk is called the \"gut-lung axis\". This review focuses on the frontier research on entero-pulmonary regulation in pulmonary fibrosis and on intervention strategies for changing the gut microbiota to improve pulmonary fibrosis, including fecal microbiota transplantation, traditional Chinese medicine interventions, and supplementation with probiotics. In addition, the present problems in this field are also raised in order to provide strong theoretical and strategic support for the future exploration of regulatory mechanisms and therapeutic drug development. This paper reviews the interaction of the intestinal flora with pulmonary fibrosis, introduces the research progress for improving pulmonary fibrosis through interventions targeted at the intestinal flora, and provides new ideas for the treatment of pulmonary fibrosis.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
α-ketoglutarate produced by lactic acid bacteria inhibits hyaluronidase activity. 乳酸菌产生的 α-酮戊二酸可抑制透明质酸酶的活性。
IF 2.5
Bioscience of microbiota, food and health Pub Date : 2024-01-01 Epub Date: 2024-07-25 DOI: 10.12938/bmfh.2024-017
Taiki Sato, Takahiro Matsuda, Keisuke Tagawa, Shuichi Segawa
{"title":"α-ketoglutarate produced by lactic acid bacteria inhibits hyaluronidase activity.","authors":"Taiki Sato, Takahiro Matsuda, Keisuke Tagawa, Shuichi Segawa","doi":"10.12938/bmfh.2024-017","DOIUrl":"10.12938/bmfh.2024-017","url":null,"abstract":"<p><p>In Japan, the growing interest in anti-aging skin care is associated with the unprecedented aging society. Skin aging can be attributed to various factors, including the activation of hyaluronidase enzyme in subcutaneous tissues exposed to ultraviolet radiation. This enzyme breaks down hyaluronic acid, leading to skin sagging. Therefore, hyaluronidase inhibitors can effectively prevent skin aging. Previously, food components have been actively explored to search for hyaluronidase inhibitors considering the high safety of these materials. Although lactic acid bacteria (LAB)-fermented foods inhibit this enzyme, their active compounds responsible for hyaluronidase inhibition remain unknown. Thus, in this study, we aimed to explore the mechanism underlying the LAB-mediated inhibition of hyaluronidase activity. Supernatants of a LAB-fermented milk-based beverage were subjected to a hyaluronidase inhibition assay, followed by purification and separation using hydrophobic adsorbents and high-performance liquid chromatography, respectively. Subsequently, liquid chromatograph time-of-flight mass analysis was performed, revealing α-ketoglutarate (AKG) as the inhibitor of this enzyme. The half-maximal inhibitory concentration (IC<sub>50</sub>) of AKG was approximately 0.13-fold that of the known strong hyaluronidase inhibitor disodium cromoglycate (DSCG). To the best of our knowledge, this is the first report on hyaluronidase inhibition mediated by AKG, a metabolic product of LAB. Additionally, <i>Lactobacillus acidophilus</i> JCM1132 was identified as a highly effective AKG-producing LAB (63.9 µg/mL) through LC-MS/MS-based quantitative analyses using various LAB-fermented milk samples. We anticipate that the findings of this study will potentially support the development of functional foods and cosmetics enriched with AKG.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444863/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of an improved colonization system for human-derived Bifidobacterium longum subsp. longum in conventional mice through the feeding of raffinose or 1-kestose. 通过喂食棉子糖或 1-蔗糖,在常规小鼠体内开发出一种改进的长双歧杆菌亚种定植系统。
Bioscience of microbiota, food and health Pub Date : 2024-01-01 Epub Date: 2023-11-23 DOI: 10.12938/bmfh.2023-055
Mina Shimada, Youhei Kawase, Kei Sonoyama, Yoshitoshi Ogura, Tetsuya Hayashi, Atsushi Yokota, Satoru Fukiya
{"title":"Development of an improved colonization system for human-derived <i>Bifidobacterium longum</i> subsp. <i>longum</i> in conventional mice through the feeding of raffinose or 1-kestose.","authors":"Mina Shimada, Youhei Kawase, Kei Sonoyama, Yoshitoshi Ogura, Tetsuya Hayashi, Atsushi Yokota, Satoru Fukiya","doi":"10.12938/bmfh.2023-055","DOIUrl":"10.12938/bmfh.2023-055","url":null,"abstract":"<p><p>How bifidobacteria colonize and survive in the intestine is not fully understood. The administration of bifidobacteria to conventional mice can be used to evaluate their ability to colonize the intestine in the presence of endogenous gut microbiota. However, human-derived bifidobacteria do not readily colonize the intestines of conventional mice, and although colonization by <i>Bifidobacterium breve</i> UCC2003 has been achieved, the viability of such populations requires improvement. Therefore, we aimed to establish a colonization system with human-derived bifidobacteria of high viability in conventional mice using <i>Bifidobacterium longum</i> subsp. <i>longum</i> 105-A. Lactose, raffinose, and 1-kestose were identified as the preferred carbohydrate sources for the growth of this strain in culture. The administration of <i>B. longum</i> 105-A to conventional BALB/c mice fed these carbohydrates showed that diets containing 6% (w/w) raffinose or 1-kestose facilitated colonization with >10<sup>8</sup> colony-forming units/g feces for 2 weeks. The population of this strain was more stable in the raffinose-fed group than in the 1-kestose-fed group. The ingestion of these prebiotics had a greater impact on the composition of the microbiota than the administration of <i>B. longum</i> 105-A. The ingestion of these prebiotics also increased the fecal concentrations of organic acids, which was indicative of greater intestinal fermentation. Collectively, we established a colonization system for <i>B. longum</i> 105-A with high viability in conventional mice by feeding the mice raffinose or 1-kestose. This system should be useful for elucidation of the mechanisms of colonization and survival of bifidobacteria in the intestines in the presence of the endogenous gut microbiota.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140338050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross interaction between bacterial and fungal microbiota and their relevance to human health and disease: mechanistic pathways and prospective therapy. 细菌和真菌微生物群之间的交叉作用及其与人类健康和疾病的关系:机理途径和前瞻性疗法。
IF 2.5
Bioscience of microbiota, food and health Pub Date : 2024-01-01 Epub Date: 2024-07-24 DOI: 10.12938/bmfh.2024-031
Rasha Mokhtar Elnagar
{"title":"Cross interaction between bacterial and fungal microbiota and their relevance to human health and disease: mechanistic pathways and prospective therapy.","authors":"Rasha Mokhtar Elnagar","doi":"10.12938/bmfh.2024-031","DOIUrl":"10.12938/bmfh.2024-031","url":null,"abstract":"<p><p>Diverse bacterial and fungal microbiota communities inhabit the human body, and their presence is essential for maintaining host homeostasis. The oral cavity, lung, gut, and vagina are just a few of the bodily cavities where these microorganisms communicate with one another, either directly or indirectly. The effects of this interaction can be either useful or detrimental to the host. When the healthy microbial diversity is disturbed, for instance, as a result of prolonged treatment with broad spectrum antibiotics, this allows the growth of specific microbes at the expense of others and alters their pathogenicity, causing a switch of commensal germs into pathogenic germs, which could promote tissue invasion and damage, as occurs in immunocompromised patients. Consequently, antimicrobials that specifically target pathogens may help in minimizing secondary issues that result from the disruption of useful bacterial/fungal interactions (BFIs). The interface between <i>Candida albicans</i> and <i>Aspergillus fumigatus</i> with bacteria at various body sites is emphasized in the majority of the medically important BFIs that have been reported thus far. This interface either supports or inhibits growth, or it enhances or blocks the generation of virulence factors. The aim of this review is to draw attention to the link between the bacterial and fungal microbiota and how they contribute to both normal homeostasis and disease development. Additionally, recent research that has studied microbiota as novel antimicrobials is summarized.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444862/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of an intestinal epithelial cell line and organoids derived from the same swine and characterization of their antiviral responses. 开发肠上皮细胞系和来自同一头猪的器官组织,并确定其抗病毒反应的特征。
IF 2.5
Bioscience of microbiota, food and health Pub Date : 2024-01-01 Epub Date: 2024-05-28 DOI: 10.12938/bmfh.2024-0046
Kaho Matsumoto, Fu Namai, Ayako Miyazaki, Yoshiya Imamura, Kohtaro Fukuyama, Wakako Ikeda-Ohtsubo, Keita Nishiyama, Julio Villena, Kohtaro Miyazawa, Haruki Kitazawa
{"title":"Development of an intestinal epithelial cell line and organoids derived from the same swine and characterization of their antiviral responses.","authors":"Kaho Matsumoto, Fu Namai, Ayako Miyazaki, Yoshiya Imamura, Kohtaro Fukuyama, Wakako Ikeda-Ohtsubo, Keita Nishiyama, Julio Villena, Kohtaro Miyazawa, Haruki Kitazawa","doi":"10.12938/bmfh.2024-0046","DOIUrl":"10.12938/bmfh.2024-0046","url":null,"abstract":"<p><p>Intestinal homeostasis and integrity are important factors for maintaining host health. This study established intestinal epithelial cell lines and organoids from the same swine jejunal crypts to develop seamless swine intestinal <i>in vitro</i> evaluation systems. The study evaluated the proliferative capacity and tight junction formation of the epithelial cell line and characterized the cell differentiation potential of the intestinal organoids. The evaluation systems were subsequently exposed to the Toll-like receptor 3 (TLR3) agonist poly(I:C) to simulate viral infections and assess the antiviral responses. The results demonstrated no differences in the response to type I interferons. There were, however, significant differences in the expression of interferon-stimulated genes. This study collectively introduced a flexible evaluation system using cell lines and organoids and revealed notable differences in the expression of interferon-stimulated genes, highlighting the complexity of the immune responses in these <i>in vitro</i> systems and the importance of intestinal heterogeneity in assessing viral responses.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic approaches targeting the gut microbiota in ischemic stroke: current advances and future directions. 针对缺血性中风的肠道微生物群的治疗方法:当前进展与未来方向。
IF 2.5
Bioscience of microbiota, food and health Pub Date : 2024-01-01 Epub Date: 2024-07-18 DOI: 10.12938/bmfh.2024-022
Zhiguo Mao, Jinying Zhang, Lin Guo, Xiaoran Wang, Zhengwang Zhu, Mingsan Miao
{"title":"Therapeutic approaches targeting the gut microbiota in ischemic stroke: current advances and future directions.","authors":"Zhiguo Mao, Jinying Zhang, Lin Guo, Xiaoran Wang, Zhengwang Zhu, Mingsan Miao","doi":"10.12938/bmfh.2024-022","DOIUrl":"10.12938/bmfh.2024-022","url":null,"abstract":"<p><p>Ischemic stroke (IS) is the predominant form of stroke pathology, and its clinical management remains constrained by therapeutic time frame. The gut microbiota (GM), comprising a multitude of bacterial and archaeal cells, surpasses the human cell count by approximately tenfold and significantly contributes to the human organism's growth, development, and overall well-being. The microbiota-gut-brain axis (MGBA) in recent years has established a strong association between gut microbes and the brain, demonstrating their intricate involvement in the progression of IS. The regulation of IS by the GM, encompassing changes in composition, abundance, and distribution, is multifaceted, involving neurological, endocrine, immunological, and metabolic mechanisms. This comprehensive understanding offers novel insights into the therapeutic approaches for IS. The objective of this paper is to examine the mechanisms of interaction between the GM and IS in recent years, assess the therapeutic effects of the GM on IS through various interventions, such as dietary modifications, probiotics, fecal microbiota transplantation, and antibiotics, and offer insights into the potential clinical application of the GM in stroke treatment.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444859/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional profiling of geniposide bioconversion into genipin during gardenia fructus extract fermentation by Lactobacillus (Lactiplantibacillus) plantarum SN13T. 植物乳杆菌(Lactiplantibacillus)SN13T 在栀子果提取物发酵过程中将玄皮苷生物转化为玄皮素的转录谱分析。
Bioscience of microbiota, food and health Pub Date : 2024-01-01 Epub Date: 2023-12-18 DOI: 10.12938/bmfh.2023-066
Shrijana Shakya, Narandalai Danshiitsoodol, Masafumi Noda, Masanori Sugiyama
{"title":"Transcriptional profiling of geniposide bioconversion into genipin during gardenia fructus extract fermentation by <i>Lactobacillus (Lactiplantibacillus) plantarum</i> SN13T.","authors":"Shrijana Shakya, Narandalai Danshiitsoodol, Masafumi Noda, Masanori Sugiyama","doi":"10.12938/bmfh.2023-066","DOIUrl":"10.12938/bmfh.2023-066","url":null,"abstract":"<p><p><i>Lactiplantibacillus plantarum</i> SN13T is a probiotic plant-derived lactic acid bacterium that can grow in various medicinal plant extracts. In this study, we fermented an aqueous extract of gardenia fructus, the fruit of a medicinal plant, with SN13T, such that the bioactivity of the extract was potentiated after fermentation to suppress the release of inflammatory mediators, such as nitric oxide (NO), reactive oxygen species (ROS), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), as well as downregulate inflammatory genes in lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. This increased antioxidant and anti-inflammatory activity was mediated through bioconversion of the iridoid glycoside geniposide to its aglycone genipin via the supposed hydrolytic action of β-glucosidases harbored by SN13T. In the complete genome of SN13T, ten putative genes encoding β-glucosidases of glycosyl hydrolase (GH) family 1 organized among eight gene operons were identified. Transcriptional profiling revealed that two 6-phospho-β-glucosidase genes, <i>pbg9</i> and <i>SN13T_1925</i>, located adjacently in the gene operon <i>SN13T_1923</i>, were transcribed significantly more than the remaining genes during fermentation of the gardenia extract. This suggests the role of these β-glucosidases in bioconversion of geniposide to genipin and the subsequent enhanced bioactivity of the gardenia fructus extract after fermentation with SN13T.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140338028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficacy and safety of rifaximin in patients with chronic intestinal pseudo-obstruction: a randomized, double-blind, placebo-controlled, phase II-a exploratory trial. 利福昔明对慢性肠道假性梗阻患者的疗效和安全性:一项随机、双盲、安慰剂对照的 II 期探索性试验。
Bioscience of microbiota, food and health Pub Date : 2024-01-01 Epub Date: 2023-12-27 DOI: 10.12938/bmfh.2023-080
Hidenori Ohkubo, Takaomi Kessoku, Kosuke Tanaka, Kota Takahashi, Tomohiro Takatsu, Tsutomu Yoshihara, Noboru Misawa, Keiichi Ashikari, Akiko Fuyuki, Shingo Kato, Takuma Higurashi, Kunihiro Hosono, Masato Yoneda, Toshihiro Misumi, Satoru Shinoda, Vincenzo Stanghellini, Atsushi Nakajima
{"title":"Efficacy and safety of rifaximin in patients with chronic intestinal pseudo-obstruction: a randomized, double-blind, placebo-controlled, phase II-a exploratory trial.","authors":"Hidenori Ohkubo, Takaomi Kessoku, Kosuke Tanaka, Kota Takahashi, Tomohiro Takatsu, Tsutomu Yoshihara, Noboru Misawa, Keiichi Ashikari, Akiko Fuyuki, Shingo Kato, Takuma Higurashi, Kunihiro Hosono, Masato Yoneda, Toshihiro Misumi, Satoru Shinoda, Vincenzo Stanghellini, Atsushi Nakajima","doi":"10.12938/bmfh.2023-080","DOIUrl":"10.12938/bmfh.2023-080","url":null,"abstract":"<p><p>Chronic intestinal pseudo-obstruction (CIPO) is a rare intractable disease with limited treatment options. Small intestinal bacterial overgrowth (SIBO) often co-occurs with several diseases, including CIPO. While rifaximin (RFX) is effective in treating SIBO, its efficacy for CIPO remains unclear. Here, we aimed to investigate the efficacy and safety of RFX in adult patients with CIPO. Twelve patients were randomly assigned to receive RFX (400 mg three times daily, n=8) or a placebo (PBO, n=4) for 4 weeks. The global symptom score for abdominal bloating (GSS-bloating) and an original whole gastrointestinal symptoms score (O-WGSS) were collected, and a glucose hydrogen breath test (GHBT) and abdominal computed tomography (CT) were performed. No significant differences were observed in the primary endpoint. GSS-bloating improved by 75% and 25% in the PBO and RFX groups, respectively, and O-WGSS improved by 25% in both groups. No significant differences were observed in secondary and other endpoints, including the SIBO eradication rate in the GHBT and small intestinal volume on CT. In a post hoc analysis of SIBO-positive patients with CIPO (4/4 and 4/8 in the PBO and RFX groups), SIBO was eradicated in 25% and 75% of the patients (PBO and RFX groups, respectively) at the end of treatment, indicating a high eradication rate in the RFX group. Furthermore, the small intestinal gas volume decreased in the RFX group, and no severe adverse events occurred. Although no significant improvements were observed in subjective indicators, RFX may be beneficial in alleviating SIBO and reducing the small intestinal gas volume in SIBO-positive patients with CIPO.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140338051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-based assessment of safety characteristics of Lacticaseibacillus paracasei NY1301 and genomic differences in closely related strains marketed as probiotics. 基于基因组的副乳杆菌 NY1301 安全特性评估以及作为益生菌上市的近缘菌株的基因组差异。
Bioscience of microbiota, food and health Pub Date : 2024-01-01 Epub Date: 2024-01-24 DOI: 10.12938/bmfh.2023-072
Masanori Fukao, Atsushi Oki, Shuichi Segawa
{"title":"Genome-based assessment of safety characteristics of <i>Lacticaseibacillus paracasei</i> NY1301 and genomic differences in closely related strains marketed as probiotics.","authors":"Masanori Fukao, Atsushi Oki, Shuichi Segawa","doi":"10.12938/bmfh.2023-072","DOIUrl":"10.12938/bmfh.2023-072","url":null,"abstract":"<p><p>The probiotic attributes of <i>Lacticaseibacillus paracasei</i> NY1301 were comprehensively characterized, and a comparison between the closely related LcA (Actimel) and LcY (Yakult) probiotic strains was conducted using genomic tools. All strains exhibited high genetic similarity and likely shared a common ancestor; differences were primarily expressed as minor chromosomal re-arrangements, substitutions, insertions, and deletions. Compared with LcY, NY1301 exhibited 125 single-nucleotide polymorphisms. NY1301 lacked virulence factors, antibiotic resistance genes, and mutations associated with antibiotic resistance and had a 46-kbp prophage. This prophage is spontaneously induced at low levels and remains in a non-lytic state under standard culture conditions. The observed causal adaptive mutations were likely related to niche adaptation within the respective laboratory or manufacturing processes that occurred during the maintenance of the strains. However, the phenotypic effects of these genomic differences remain unclear. To validate the safety of NY1301, we conducted an open-label trial with healthy participants who consumed excessive amounts of NY1301 (3.0 × 10<sup>11</sup> cfu) daily for 28 days. The results of this trial and those of other <i>in vivo</i> studies, coupled with the long history of human consumption without established risks to humans, provide strong evidence confirming the safety of NY1301.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981942/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140338052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of subchronic and mild social defeat stress on the intestinal microbiota and fecal bile acid composition in mice. 亚慢性轻度社会挫败应激对小鼠肠道微生物群和粪便胆汁酸组成的影响
IF 2.5
Bioscience of microbiota, food and health Pub Date : 2024-01-01 Epub Date: 2024-03-29 DOI: 10.12938/bmfh.2023-095
Naoko Yamagishi, Daisuke Kyoui, Naoko Moriya, Ayako Aoki-Yoshida, Tatsuhiko Goto, Atsushi Toyoda, Katsunari Ippoushi, Mari Maeda-Yamamoto, Yoshiharu Takayama, Chise Suzuki
{"title":"Effects of subchronic and mild social defeat stress on the intestinal microbiota and fecal bile acid composition in mice.","authors":"Naoko Yamagishi, Daisuke Kyoui, Naoko Moriya, Ayako Aoki-Yoshida, Tatsuhiko Goto, Atsushi Toyoda, Katsunari Ippoushi, Mari Maeda-Yamamoto, Yoshiharu Takayama, Chise Suzuki","doi":"10.12938/bmfh.2023-095","DOIUrl":"10.12938/bmfh.2023-095","url":null,"abstract":"<p><p>The gut microbiota plays a crucial role in both the pathogenesis and alleviation of host depression by modulating the brain-gut axis. We have developed a murine model of human depression called the subchronic and mild social defeat stress (sCSDS) model, which impacts not only behavior but also the host gut microbiota and gut metabolites, including bile acids. In this study, we utilized liquid chromatography/mass spectrometry (LC/MS) to explore the effects of sCSDS on the mouse fecal bile acid profile. sCSDS mice exhibited significantly elevated levels of deoxycholic acid (DCA) and lithocholic acid (LCA) in fecal extracts, leading to a notable increase in total bile acids and 7α-dehydroxylated secondary bile acids. Consequently, a noteworthy negative correlation was identified between the abundances of DCA and LCA and the social interaction score, an indicator of susceptibility in stressed mice. Furthermore, analysis of the colonic microbiome unveiled a negative correlation between the abundance of CDCA and <i>Turicibacter</i>. Additionally, DCA and LCA exhibited positive correlations with <i>Oscillospiraceae</i> and <i>Lachnospiraceae</i> but negative correlations with the <i>Eubacterium coprostanoligenes</i> group. These findings suggest that sCSDS impacts the bidirectional interaction between the gut microbiota and bile acids and is associated with reduced social interaction, a behavioral indicator of susceptibility in stressed mice.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220325/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信