Modulation of the gut microbiota by dietary intervention with Acanthocereus tetragonus improves the health status of Wistar rats with metabolic syndrome.
Karla Lizzeth Morales-Cano, Yokebed Cecilia Rivera-Alamillo, Rosa Maria Oliart-Ros, Carolina Peña-Montes
{"title":"Modulation of the gut microbiota by dietary intervention with <i>Acanthocereus tetragonus</i> improves the health status of Wistar rats with metabolic syndrome.","authors":"Karla Lizzeth Morales-Cano, Yokebed Cecilia Rivera-Alamillo, Rosa Maria Oliart-Ros, Carolina Peña-Montes","doi":"10.12938/bmfh.2024-041","DOIUrl":null,"url":null,"abstract":"<p><p>The gastrointestinal tract is an ecosystem with heterogeneous patterns, distributions, and environments, resulting in different microbial compositions in each gut segment. The relationship between diet and microbiota determines this heterogeneity. Consumption of diets high in fat and carbohydrates (HLHC) is associated with gut dysbiosis, low microbial diversity, and metabolic syndrome (MetS). Functional fiber consumption improves the profile and diversity of the gut microbiota (GM); it stimulates the production of short-chain fatty acids (SCFAs), which act as signaling molecules that maintain the gut barrier integrity and induce hormone synthesis that regulates satiety and glucose metabolism, reducing some MetS parameters. The effect of a dietary intervention with <i>Acanthocereus tetragonus</i> (At), a cactus rich in fiber, antioxidants, amino acids, and minerals traditionally consumed by the Mexican population, is reported here. For this purpose, Wistar rats were randomly divided into three study groups: a control (C) group, a MetS group, and an At-supplemented group. In the MetS and At groups, an HLHC was administered for 12 weeks, inducing MetS. After 18 weeks, stool samples were collected for microbiota sequencing. HLHC administration favored Firmicutes and decreased the abundance of Bacteriodetes at the phylum level in the MetS group. At the genus level, the dietary intervention with At increased the presence of <i>Roseburia</i>, <i>Ruminococcus</i>, <i>Blautia</i>, <i>Bacteroides</i>, and <i>Christensenella</i>, reflecting the effect of <i>A. tetragonus</i> consumption on GM. At diet administration reduced body weight; the plasma glucose, insulin, and lipid levels; and insulin resistance.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"44 2","pages":"100-109"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience of microbiota, food and health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12938/bmfh.2024-041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The gastrointestinal tract is an ecosystem with heterogeneous patterns, distributions, and environments, resulting in different microbial compositions in each gut segment. The relationship between diet and microbiota determines this heterogeneity. Consumption of diets high in fat and carbohydrates (HLHC) is associated with gut dysbiosis, low microbial diversity, and metabolic syndrome (MetS). Functional fiber consumption improves the profile and diversity of the gut microbiota (GM); it stimulates the production of short-chain fatty acids (SCFAs), which act as signaling molecules that maintain the gut barrier integrity and induce hormone synthesis that regulates satiety and glucose metabolism, reducing some MetS parameters. The effect of a dietary intervention with Acanthocereus tetragonus (At), a cactus rich in fiber, antioxidants, amino acids, and minerals traditionally consumed by the Mexican population, is reported here. For this purpose, Wistar rats were randomly divided into three study groups: a control (C) group, a MetS group, and an At-supplemented group. In the MetS and At groups, an HLHC was administered for 12 weeks, inducing MetS. After 18 weeks, stool samples were collected for microbiota sequencing. HLHC administration favored Firmicutes and decreased the abundance of Bacteriodetes at the phylum level in the MetS group. At the genus level, the dietary intervention with At increased the presence of Roseburia, Ruminococcus, Blautia, Bacteroides, and Christensenella, reflecting the effect of A. tetragonus consumption on GM. At diet administration reduced body weight; the plasma glucose, insulin, and lipid levels; and insulin resistance.