{"title":"Machine learning prediction of effective radiation doses in various computed tomography applications: a virtual human phantom study.","authors":"Handan Tanyildizi-Kokkulunk","doi":"10.1515/bmt-2024-0620","DOIUrl":"https://doi.org/10.1515/bmt-2024-0620","url":null,"abstract":"<p><strong>Objectives: </strong>In this work, it was aimed to employ machine learning (ML) algorithms to accurately forecast the radiation doses for phantoms while accounting for the most popular CT protocols.</p><p><strong>Methods: </strong>A cloud-based software was utilized to calculate the effective doses from different CT protocols. To simulate a range of adult patients with different weights, eight entire body mesh-based computational phantom sets were used. The head, neck, and chest-abdomen-pelvis CT scan characteristics were combined to create a dataset with 33 rows for each phantom and 792 rows total. At the ML stage, linear (LR), random forest (RF) and support vector regression (SVR) were used. Mean absolute error, mean squared error and accuracy were used to evaluate the performances.</p><p><strong>Results: </strong>The female phantoms received higher doses (7.8 %) than males. Furthermore, an average of 11 % more dose was taken to the normal weight phantom than to the overweight, the overweight in comparison to the obese I, and the obese I in comparison to the obese II. Among the ML algorithms, the LR showed 0 error rate and 100 % accuracy in predicting CT doses.</p><p><strong>Conclusions: </strong>The LR was shown to be the best approach out of those used in the ML estimation of CT-induced doses.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143804837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neven Saleh, Ahmed M Salaheldin, Yasser Ismail, Heba M Afify
{"title":"Classification of anemic condition based on photoplethysmography signals and clinical dataset.","authors":"Neven Saleh, Ahmed M Salaheldin, Yasser Ismail, Heba M Afify","doi":"10.1515/bmt-2024-0433","DOIUrl":"10.1515/bmt-2024-0433","url":null,"abstract":"<p><strong>Objectives: </strong>One of the worldwide public health issues mostly affecting children and expectant mothers is Anemia. Recently, non-invasive hemoglobin (Hb) measurements, such as machine learning (ML) algorithms, can diagnose Anemia more quickly and efficiently.</p><p><strong>Methods: </strong>To diagnose Anemia using photoplethysmography (PPG), two tracks are investigated in this paper, based on clinical data and PPG signals. We use state-of-the-art data for Hb levels, extracted from PPG signals. This first track's methodology is divided into three stages: the labelling of the data as normal and abnormal; the data pre-processing; and applying ML algorithms based on four given features. We extracted nineteen features for red and infrared measurements in the second track. The second track's methodology is broken down into five stages: labelling of the data; data processing; signal augmentation; feature extraction; and applying ML algorithms. A five-fold cross-validation technique was applied for both tracks.</p><p><strong>Results: </strong>We succeeded in classifying the anemic condition with 100 % classification accuracy. Our accurate detection of anemic status will promote preventive healthcare.</p><p><strong>Conclusions: </strong>Ultimately, this proposed ML model in this paper validated the effectiveness of the ML algorithms as non-invasive techniques for identifying Anemia.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143805154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Negar Ziehm, Johan Arbustini, Eric Elzenheimer, Mohsen Samadi, Giuseppe Barbieri, Martina Gerken, Michael Höft, Robert Rieger, Andreas Bahr
{"title":"MEMS-based narrow-bandwidth magnetic field sensors: preliminary assessment of prototypes regarding coercivity, remanence, and sensitivity.","authors":"Negar Ziehm, Johan Arbustini, Eric Elzenheimer, Mohsen Samadi, Giuseppe Barbieri, Martina Gerken, Michael Höft, Robert Rieger, Andreas Bahr","doi":"10.1515/bmt-2024-0415","DOIUrl":"https://doi.org/10.1515/bmt-2024-0415","url":null,"abstract":"<p><strong>Objectives: </strong>This study evaluates micro-electro-mechanical systems (MEMS) devices comprising cantilever piezoelectric resonators with powder-based permanent magnets (micromagnets) at the tip. Fabricated using a well-known PowderMEMS process given by the Fraunhofer Institute for Silicon Technology, these devices function as magnetic field sensors based on the magnetic torque detection principle, which arises from the interaction between the given micromagnets' dipole moment and the to-be-measured magnetic field. The study investigates how the magnetic state of the micromagnets influences the overall sensitivity of the provided Prototype MEMS-devices.</p><p><strong>Methods: </strong>The performance of the first prototypes of this narrow-band magnetic field sensor was evaluated using two approaches: (1) a Vibrating Sample Magnetometer (VSM) to analyze the magnetic hysteresis loop and (2) sensitivity measurements at resonance frequency to determine the provided sensitivity under a predefined external magnetic flux density.</p><p><strong>Results: </strong>Among the four prototypes analyzed, the device with the highest remanence and coercivity demonstrated superior sensing performance, achieving a sensitivity of 1,090 kV/T at the resonance frequency. The analysis showcased substantial variations in noise amplitude spectral density, and sensitivity, emphasizing the importance of magnetic hysteresis properties in sensor performance.</p><p><strong>Conclusions: </strong>These findings highlight the potential of MEMS-devices with enhanced coercivity and remanence for enhanced sensing capabilities in compact sensor designs, particularly useful for array sensor configurations in narrow-bandwith medical applications.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143775154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lu Jin, Zhen Yang, Xu Wang, Shixiao Wan, Huanhuan Zhao, Ying Zhang, Juan Jin, Jilai Tian
{"title":"Free gas micro-/nano-bubble water: a novel dispersion system to prepare ultrasound imaging vehicles.","authors":"Lu Jin, Zhen Yang, Xu Wang, Shixiao Wan, Huanhuan Zhao, Ying Zhang, Juan Jin, Jilai Tian","doi":"10.1515/bmt-2024-0280","DOIUrl":"https://doi.org/10.1515/bmt-2024-0280","url":null,"abstract":"<p><strong>Objectives: </strong>Free gas micro-/nano-bubbles (MNBs) in water have demonstrated significant potential in various industrial applications, including water treatment, enhanced transport processes, and disinfection. However, the feasibility of utilizing MNBs water as a dispersed system for preparing ultrasound imaging vehicles is seldom explored. This study aims to investigate the potential of MNBs water for this purpose.</p><p><strong>Methods: </strong>Initially, MNBs water containing sulfur hexafluoride (SF<sub>6</sub>) was prepared and characterized. Subsequently, the potential of SF<sub>6</sub> MNBs water to form lipid-shelled bubbles for ultrasound imaging was evaluated. This involved the incubation of lyophilized phospholipids with SF<sub>6</sub> MNBs water.</p><p><strong>Results: </strong>The study confirmed the presence of SF<sub>6</sub> MNBs in water. Through the incubation process, it was possible to obtain lipid-shelled bubbles with a nano-sized and narrow size distribution. These bubbles exhibited comparable echogenicity to those produced by conventional mechanical agitation methods during the initial 5 min of <i>in vitro</i> observation.</p><p><strong>Conclusions: </strong>SF<sub>6</sub> MNBs water represents a novel dispersion medium for generating nano-sized lipid-shelled bubbles. This approach offers a promising new method for extravascular ultrasound imaging and drug delivery, potentially expanding the applications of MNBs in medical imaging and therapeutic delivery systems.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian Halbauer, Felix Capanni, Lucas Engelhardt, Andreas Paech, Christian Knop, Tobias Merkle, Tomas Da Silva
{"title":"Does helical plating for proximal humeral shaft fractures benefit bone healing? - an <i>in silico</i> analysis in fracture healing.","authors":"Christian Halbauer, Felix Capanni, Lucas Engelhardt, Andreas Paech, Christian Knop, Tobias Merkle, Tomas Da Silva","doi":"10.1515/bmt-2024-0445","DOIUrl":"https://doi.org/10.1515/bmt-2024-0445","url":null,"abstract":"<p><strong>Objectives: </strong>Helical plating is an established alternative to straight plating for humeral shaft fractures in order to prevent iatrogenic radial nerve damage. However, a previous biomechanical investigation indicated differences in fracture healing for helical plating due to a potential shift of interfragmentary movements compared to straight plating. Therefore, fracture healing simulations were performed to assess any differences in bone healing of helical vs. straight plating.</p><p><strong>Methods: </strong>A systematic workflow for fracture healing analytics was created, covering essential steps of bone modelling, implant modelling, finite element modelling, fracture healing simulation and result analysis. Computational humerus models with an AO12C2 fracture and straight and helical osteosynthesis were created. An established fracture healing model was used to simulate callus formation over 112 days under physiological loading. The predicted tissue differentiation and interfragmentary movement (IFM) was tracked over the entire simulated healing course.</p><p><strong>Results: </strong>Helical plating resulted in larger interfragmentary movements for compression and shear components, and in a greater proportion of near and far cortical movement. Vascularization and tissue formation were deferred, but cortical bridging was achieved.</p><p><strong>Conclusions: </strong>Helical plating resulted in slightly deferred bone healing due to larger interfragmentary shear movements. Considering the advantage of helical plating in clinical context, a slightly deferred bone healing is justifiable.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and optimization of a high-definition transcranial electrical stimulation device with envelope wave.","authors":"Renling Zou, Linpeng Jin, Yuhao Liu, Liang Zhao, Li Cao, Xiufang Hu, Xuezhi Yin","doi":"10.1515/bmt-2024-0284","DOIUrl":"https://doi.org/10.1515/bmt-2024-0284","url":null,"abstract":"<p><strong>Objectives: </strong>Transcranial electrical stimulation (tES) has been widely used in neuroscience research, and the spatial focusing and penetration of the process are currently the main constraints on the effectiveness of treatment.</p><p><strong>Methods: </strong>A high-definition electrical stimulation (HD-tES) device with envelope waves was designed. The device utilized a 4 × 1 electrode structure and was designed with an impedance adjustment circuit to evenly distribute the current among the four return channels. The output performance and safety of the device were verified in in vitro experiments. The spatial focusing of the 4 × 1 electrode structure and the high penetration advantage of envelope waves are explored through simulations. Finally, experiments were performed on 10 healthy adults.</p><p><strong>Results: </strong>The 4 × 1 electrode structure has the best spatial focusing effect. Current frequencies above 1 kHz may have higher tissue penetration. In addition, the safety of envelope wave stimulation has been verified in human trials, and no adverse reactions occurred during stimulation.</p><p><strong>Conclusions: </strong>The low and medium frequency (<10 kHz) envelope wave HD-tES device is expected to have a positive impact in the field of medicine and neuroscience.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143627104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annika Holtz, Manfred Grüner, Ludger Keilig, Christoph Bourauel, Helmut Stark, Istabrak Dörsam
{"title":"Wear investigation of implant-supported upper removable prothesis with electroplated gold or PEKK secondary crowns.","authors":"Annika Holtz, Manfred Grüner, Ludger Keilig, Christoph Bourauel, Helmut Stark, Istabrak Dörsam","doi":"10.1515/bmt-2024-0038","DOIUrl":"10.1515/bmt-2024-0038","url":null,"abstract":"<p><strong>Objectives: </strong>The aim of the present study was to investigate, whether polyetherketoneketone (PEKK) secondary crowns could be considered as alternative to gold standard in terms of their physical properties and manufacturing costs.</p><p><strong>Methods: </strong>An upper jaw model with six implants was used. Frameworks with either 6 PEKK- or 6 electroplated secondary crowns were cemented in a wear simulator. A total of 20 specimens (10 PEKK, 10 gold) run 10,000 cycles in the wear simulator with a lubricant. Additionally, 10,000 cycles in the thermocycling baths with 5 °C and 55 °C have gone through, before running extra 10,000 cycles in the wear simulator again. Finally, the abutments were analysed for signs of wear under the electron microscope.</p><p><strong>Results: </strong>The mean pulling out force value for PEKK was 21 N. For the electroplated gold secondary crowns an average of 19 N was measured. Multiple fluctuations were observed in the gold series of tests. After 20,000 cycles in the wear simulator and 10,000 cycles in the thermocycling machine, there were no major losses to be measured in terms of wear for both materials. In the microscopic analysis of the abutments, traces of wear could be seen in pull-out direction, mainly in the gold samples.</p><p><strong>Conclusions: </strong>PEKK secondary crowns have lower costs, more stable retention force values and are easier to produce than the gold standard. On average, the pull-out force values were 11 N higher than recommended.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":"115-123"},"PeriodicalIF":0.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integration of neuromuscular control for multidirectional horizontal planar reaching movements in a portable upper limb exoskeleton for enhanced stroke rehabilitation.","authors":"Yongkun Zhao, Juzheng Mao, Mingquan Zhang, Haijun Wu, Jiatong Jiang, Shibo Jing","doi":"10.1515/bmt-2023-0622","DOIUrl":"10.1515/bmt-2023-0622","url":null,"abstract":"<p><p>Globally, the prevalence of stroke is significant and increasing annually. This growth has led to a demand for rehabilitation services that far exceeds the supply, leaving many stroke survivors without adequate rehabilitative care. In response to this challenge, this study introduces a portable exoskeleton system that integrates neural control mechanisms governing human arm movements. This design leverages neuroplasticity principles to simulate natural movements, aiming to reactivate and strengthen neuromuscular connections and thus enhance rehabilitation outcomes. A tailored musculoskeletal model of the human arm and an associated cost function were developed to accurately replicate the planar motion trajectories of a healthy human arm across 32 directions. The application of a Proportional-Derivative (PD) controller enables precise tracking of these trajectories by the exoskeleton. Individual testing has demonstrated high consistency between the exoskeleton-driven motion paths and the simulated trajectories, especially in trajectory accuracy along the X and Y axes. These findings support the efficacy of integrating advanced neural control strategies with practical exoskeleton designs in stroke rehabilitation.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":"135-146"},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianning Li, Zongwei Zhou, Jiancheng Yang, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Chongyu Qu, Tiezheng Zhang, Xiaoxi Chen, Wenxuan Li, Marek Wodzinski, Paul Friedrich, Kangxian Xie, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R Memon, Christopher Schlachta, Sandrine De Ribaupierre, Rajnikant Patel, Roy Eagleson, Xiaojun Chen, Heinrich Mächler, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G Ellis, Michele R Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian T Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Vincenzo Ferrari, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Vicky Vandenbossche, Aline Van Oevelen, Kate Duquesne, Hamza Mekhzoum, Jef Vandemeulebroucke, Emmanuel Audenaert, Claudia Krebs, Timo van Leeuwen, Evie Vereecke, Hauke Heidemeyer, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Timo van Meegdenburg, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H Bahnsen, Constantin Seibold, Alexander Jaus, Zdravko Marinov, Paul F Jaeger, Rainer Stiefelhagen, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Yannik Hanusrichter, Martin Weßling, Marcel Dudda, Lars E Podleska, Matthias A Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F Hoyer, Oliver Basu, Thomas Maal, Max J H Witjes, Gregor Schiele, Ti-Chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Thomas M Deserno, Christos Davatzikos, Behrus Puladi, Pascal Fua, Alan L Yuille, Jens Kleesiek, Jan Egger
{"title":"<i>MedShapeNet</i> - a large-scale dataset of 3D medical shapes for computer vision.","authors":"Jianning Li, Zongwei Zhou, Jiancheng Yang, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Chongyu Qu, Tiezheng Zhang, Xiaoxi Chen, Wenxuan Li, Marek Wodzinski, Paul Friedrich, Kangxian Xie, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R Memon, Christopher Schlachta, Sandrine De Ribaupierre, Rajnikant Patel, Roy Eagleson, Xiaojun Chen, Heinrich Mächler, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G Ellis, Michele R Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian T Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Vincenzo Ferrari, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Vicky Vandenbossche, Aline Van Oevelen, Kate Duquesne, Hamza Mekhzoum, Jef Vandemeulebroucke, Emmanuel Audenaert, Claudia Krebs, Timo van Leeuwen, Evie Vereecke, Hauke Heidemeyer, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Timo van Meegdenburg, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H Bahnsen, Constantin Seibold, Alexander Jaus, Zdravko Marinov, Paul F Jaeger, Rainer Stiefelhagen, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Yannik Hanusrichter, Martin Weßling, Marcel Dudda, Lars E Podleska, Matthias A Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F Hoyer, Oliver Basu, Thomas Maal, Max J H Witjes, Gregor Schiele, Ti-Chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Thomas M Deserno, Christos Davatzikos, Behrus Puladi, Pascal Fua, Alan L Yuille, Jens Kleesiek, Jan Egger","doi":"10.1515/bmt-2024-0396","DOIUrl":"10.1515/bmt-2024-0396","url":null,"abstract":"<p><strong>Objectives: </strong>The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models). However, a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instruments is missing.</p><p><strong>Methods: </strong>We present MedShapeNet to translate data-driven vision algorithms to medical applications and to adapt state-of-the-art vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. We present use cases in classifying brain tumors, skull reconstructions, multi-class anatomy completion, education, and 3D printing.</p><p><strong>Results: </strong>By now, MedShapeNet includes 23 datasets with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing.</p><p><strong>Conclusions: </strong>MedShapeNet contains medical shapes from anatomy and surgical instruments and will continue to collect data for benchmarks and applications. The project page is: https://medshapenet.ikim.nrw/.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":"71-90"},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}