Biomedizinische Technik. Biomedical engineering最新文献

筛选
英文 中文
Gesture recognition from surface electromyography signals based on the SE-DenseNet network.
Biomedizinische Technik. Biomedical engineering Pub Date : 2025-01-29 DOI: 10.1515/bmt-2024-0282
Ying Xiang, Wei Zheng, Jiajia Tang, You Dong, Yuhao Pang
{"title":"Gesture recognition from surface electromyography signals based on the SE-DenseNet network.","authors":"Ying Xiang, Wei Zheng, Jiajia Tang, You Dong, Yuhao Pang","doi":"10.1515/bmt-2024-0282","DOIUrl":"10.1515/bmt-2024-0282","url":null,"abstract":"<p><strong>Objectives: </strong>In recent years, significant progress has been made in the research of gesture recognition using surface electromyography (sEMG) signals based on machine learning and deep learning techniques. The main motivation for sEMG gesture recognition research is to provide more natural, convenient, and personalized human-computer interaction, which makes research in this field have considerable application prospects in rehabilitation technology. However, the existing gesture recognition algorithms still need to be further improved in terms of global feature capture, model computational complexity, and generalizability.</p><p><strong>Methods: </strong>This paper proposes a fusion model of Squeeze-and-Excitation Networks (SE) and DenseNet, inserting attention mechanism between DenseBlock and Transition to focus on the most important information, improving feature representation ability, and effectively solving the problem of gradient vanishing.</p><p><strong>Results: </strong>This proposed method was tested on the electromyographic gesture datasets NinaPro DB2 and DB4, achieving accuracies of 85.93 and 82.39 % respectively. Through ablation experiments, it was found that the method based on DenseNet-101 as the backbone model produced the best results.</p><p><strong>Conclusions: </strong>Compared with existing models, this proposed method has better robustness and generalizability in gesture recognition, providing new ideas for the development of sEMG signal gesture recognition applications in the future.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empirical analysis on retinal segmentation using PSO-based thresholding in diabetic retinopathy grading. 在糖尿病视网膜病变分级中使用基于 PSO 的阈值法进行视网膜分割的经验分析。
Biomedizinische Technik. Biomedical engineering Pub Date : 2025-01-06 DOI: 10.1515/bmt-2024-0299
Bhuvaneswari Sekar, Subashini Parthasarathy
{"title":"Empirical analysis on retinal segmentation using PSO-based thresholding in diabetic retinopathy grading.","authors":"Bhuvaneswari Sekar, Subashini Parthasarathy","doi":"10.1515/bmt-2024-0299","DOIUrl":"10.1515/bmt-2024-0299","url":null,"abstract":"<p><strong>Objectives: </strong>Diabetic retinopathy (DR) is associated with long-term diabetes and is a leading cause of blindness if it is not diagnosed early. The rapid growth of deep learning eases the clinicians' DR diagnosing procedure. It automatically extracts the features and performs the grading. However, training the image toward the majority of background pixels can impact the accuracy and efficiency of grading tasks. This paper proposes an auto-thresholding algorithm that reduces the negative impact of considering the background pixels for feature extraction which highly affects the grading process.</p><p><strong>Methods: </strong>The PSO-based thresholding algorithm for retinal segmentation is proposed in this paper, and its efficacy is evaluated against the Otsu, histogram-based sigma, and entropy algorithms. In addition, the importance of retinal segmentation is analyzed using Explainable AI (XAI) to understand how each feature impacts the model's performance. For evaluating the accuracy of the grading, ResNet50 was employed.</p><p><strong>Results: </strong>The experiments were conducted using the IDRiD fundus dataset. Despite the limited data, the retinal segmentation approach provides significant accuracy than the non-segmented approach, with a substantial accuracy of 83.70 % on unseen data.</p><p><strong>Conclusions: </strong>The result shows that the proposed PSO-based approach helps automatically determine the threshold value and improves the model's accuracy.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An exploratory study of pilot EEG features during the climb and descent phases of flight.
Biomedizinische Technik. Biomedical engineering Pub Date : 2024-12-31 DOI: 10.1515/bmt-2024-0412
Li Ji, Leiye Yi, Haiwei Li, Wenjie Han, Ningning Zhang
{"title":"An exploratory study of pilot EEG features during the climb and descent phases of flight.","authors":"Li Ji, Leiye Yi, Haiwei Li, Wenjie Han, Ningning Zhang","doi":"10.1515/bmt-2024-0412","DOIUrl":"https://doi.org/10.1515/bmt-2024-0412","url":null,"abstract":"<p><strong>Objectives: </strong>The actions and decisions of pilots are directly related to aviation safety. Therefore, understanding the neurological and cognitive processes of pilots during flight is essential. This study aims to investigate the EEG signals of pilots to understand the characteristic changes during the climb and descent stages of flight.</p><p><strong>Methods: </strong>By performing wavelet packet decomposition on the EEG signals, we examined EEG maps during these critical phases and analyzed changes in signal intensity. To delve deeper, we calculated the log-transformed power of electroencephalograms to investigate the EEG responses under different flight conditions. Additionally, we conducted EEG spectral coherence analysis to evaluate the degree of synchronization between different electrodes during climb and descent.</p><p><strong>Results: </strong>This analysis helps us understand the functional connectivity changes in various brain regions during these phases. Understanding these complex interactions is crucial, as it provides insights into the cognitive processes of pilots during the critical climb and descent stages of flight, contributing to enhanced aviation safety.</p><p><strong>Conclusions: </strong>By identifying how brain activity fluctuates during these phases, we can better comprehend pilots' decision-making processes, ultimately leading to the development of more effective training programs and safety protocols. This research underscores the importance of neurological studies in safety.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143043945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of mesoporous polyaniline for glucose sensor under different pH electrolyte conditions. 不同pH电解质条件下介孔聚苯胺用于葡萄糖传感器的性能评价。
Biomedizinische Technik. Biomedical engineering Pub Date : 2024-12-30 DOI: 10.1515/bmt-2024-0141
Zinah N Alabdali, Amar Al-Keisy, Sinan S Hamdi
{"title":"Evaluation of mesoporous polyaniline for glucose sensor under different pH electrolyte conditions.","authors":"Zinah N Alabdali, Amar Al-Keisy, Sinan S Hamdi","doi":"10.1515/bmt-2024-0141","DOIUrl":"10.1515/bmt-2024-0141","url":null,"abstract":"<p><strong>Objectives: </strong>Nonenzymatic biosensor-based-conductive polymers like polyaniline are highly electrochemically stable, cheap, and easy to synthesize biosensors, which is the main objective of research as well as testing applied in different pH conditions to get optimum sensitivity.</p><p><strong>Methods: </strong>A nonenzymatic glucose biosensor based on polyaniline was electrochemically deposited on a glassy carbon electrode; the cyclic voltammetry under range applied voltage -0.2 to 1.2 V vs. Ag/AgCl was employed to synthesize the biosensor electrode.</p><p><strong>Results: </strong>The polyaniline biosensor electrode properties were characterized, and the morphology surface photographic confirmed mesoporous architecture with many accessible pores, while chemical bonding analysis confirmed the synthesis of polyaniline. The initial investigation examined the pH levels of phosphate-buffered saline, including 5, 5.5, 6, and 6.5. The cyclic voltammetry measurement revealed that the pH=5.5 provides excellent sensitivity toward glucose detection. The sensitivity of pH=5.5 is 68.7 μA mM<sup>-1</sup> cm<sup>-2</sup>, and the low detection limit is 1 µM.</p><p><strong>Conclusions: </strong>The findings above indicate that the biosensor could be an excellent candidate for application in electrochemical glucose sensing under pH=5.5 conditions of phosphate-buffered saline.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MedShapeNet - a large-scale dataset of 3D medical shapes for computer vision. MedShapeNet -一个用于计算机视觉的大规模3D医学形状数据集。
Biomedizinische Technik. Biomedical engineering Pub Date : 2024-12-30 Print Date: 2025-02-25 DOI: 10.1515/bmt-2024-0396
Jianning Li, Zongwei Zhou, Jiancheng Yang, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Chongyu Qu, Tiezheng Zhang, Xiaoxi Chen, Wenxuan Li, Marek Wodzinski, Paul Friedrich, Kangxian Xie, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R Memon, Christopher Schlachta, Sandrine De Ribaupierre, Rajnikant Patel, Roy Eagleson, Xiaojun Chen, Heinrich Mächler, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G Ellis, Michele R Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian T Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Vincenzo Ferrari, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Vicky Vandenbossche, Aline Van Oevelen, Kate Duquesne, Hamza Mekhzoum, Jef Vandemeulebroucke, Emmanuel Audenaert, Claudia Krebs, Timo van Leeuwen, Evie Vereecke, Hauke Heidemeyer, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Timo van Meegdenburg, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H Bahnsen, Constantin Seibold, Alexander Jaus, Zdravko Marinov, Paul F Jaeger, Rainer Stiefelhagen, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Yannik Hanusrichter, Martin Weßling, Marcel Dudda, Lars E Podleska, Matthias A Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F Hoyer, Oliver Basu, Thomas Maal, Max J H Witjes, Gregor Schiele, Ti-Chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Thomas M Deserno, Christos Davatzikos, Behrus Puladi, Pascal Fua, Alan L Yuille, Jens Kleesiek, Jan Egger
{"title":"<i>MedShapeNet</i> - a large-scale dataset of 3D medical shapes for computer vision.","authors":"Jianning Li, Zongwei Zhou, Jiancheng Yang, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Chongyu Qu, Tiezheng Zhang, Xiaoxi Chen, Wenxuan Li, Marek Wodzinski, Paul Friedrich, Kangxian Xie, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R Memon, Christopher Schlachta, Sandrine De Ribaupierre, Rajnikant Patel, Roy Eagleson, Xiaojun Chen, Heinrich Mächler, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G Ellis, Michele R Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian T Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Vincenzo Ferrari, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Vicky Vandenbossche, Aline Van Oevelen, Kate Duquesne, Hamza Mekhzoum, Jef Vandemeulebroucke, Emmanuel Audenaert, Claudia Krebs, Timo van Leeuwen, Evie Vereecke, Hauke Heidemeyer, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Timo van Meegdenburg, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H Bahnsen, Constantin Seibold, Alexander Jaus, Zdravko Marinov, Paul F Jaeger, Rainer Stiefelhagen, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Yannik Hanusrichter, Martin Weßling, Marcel Dudda, Lars E Podleska, Matthias A Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F Hoyer, Oliver Basu, Thomas Maal, Max J H Witjes, Gregor Schiele, Ti-Chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Thomas M Deserno, Christos Davatzikos, Behrus Puladi, Pascal Fua, Alan L Yuille, Jens Kleesiek, Jan Egger","doi":"10.1515/bmt-2024-0396","DOIUrl":"10.1515/bmt-2024-0396","url":null,"abstract":"<p><strong>Objectives: </strong>The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models). However, a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instruments is missing.</p><p><strong>Methods: </strong>We present MedShapeNet to translate data-driven vision algorithms to medical applications and to adapt state-of-the-art vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. We present use cases in classifying brain tumors, skull reconstructions, multi-class anatomy completion, education, and 3D printing.</p><p><strong>Results: </strong>By now, MedShapeNet includes 23 datasets with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing.</p><p><strong>Conclusions: </strong>MedShapeNet contains medical shapes from anatomy and surgical instruments and will continue to collect data for benchmarks and applications. The project page is: https://medshapenet.ikim.nrw/.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":"71-90"},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Change of publication model for B iomedical Engineering/Biomedizinische Technik. B生物医学工程/Biomedizinische Technik出版模式变更。
Biomedizinische Technik. Biomedical engineering Pub Date : 2024-12-24 Print Date: 2025-02-25 DOI: 10.1515/bmt-2024-0601
Katharina J Appelt, Jens Haueisen
{"title":"Change of publication model for <i>B</i> <i>iomedical Engineering/Biomedizinische Technik</i>.","authors":"Katharina J Appelt, Jens Haueisen","doi":"10.1515/bmt-2024-0601","DOIUrl":"10.1515/bmt-2024-0601","url":null,"abstract":"","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142878944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A type-2 fuzzy inference-based approach enables walking speed estimation that adapts to inter-individual gait patterns. 基于第 2 类模糊推理的方法可根据个体间的步态模式估算步行速度。
Biomedizinische Technik. Biomedical engineering Pub Date : 2024-11-26 Print Date: 2025-02-25 DOI: 10.1515/bmt-2024-0230
Linrong Li, Wenxiang Liao, Hongliu Yu
{"title":"A type-2 fuzzy inference-based approach enables walking speed estimation that adapts to inter-individual gait patterns.","authors":"Linrong Li, Wenxiang Liao, Hongliu Yu","doi":"10.1515/bmt-2024-0230","DOIUrl":"10.1515/bmt-2024-0230","url":null,"abstract":"<p><strong>Objectives: </strong>Individuals change walking speed by regulating step frequency (SF), stride length (SL), or a combination of both (FL combinations). However, existing methods of walking speed estimation ignore this regulatory mechanism. This paper aims to achieve accurate walking speed estimation while enabling adaptation to inter-individual speed regulation strategies.</p><p><strong>Methods: </strong>We first extracted thigh features closely related to individual speed regulation based on a single thigh mounted IMU. Next, an interval type-2 fuzzy inference system was used to infer and quantify the individuals' speed regulation intentions, enabling speed estimation independent of inter-individual gait patterns. Experiments with five subjects walking on a treadmill at different speeds and with different gait patterns validated our method.</p><p><strong>Results: </strong>The overall root mean square error (RMSE) for speed estimation was 0.0704 ± 0.0087 m/s, and the RMSE for different gait patterns was no more than 0.074 ± 0.005 m/s.</p><p><strong>Conclusions: </strong>The proposed method provides high-accuracy speed estimation. Moreover, our method can be adapted to different FL combinations without the need for individualised tuning or training of individuals with varying limb lengths and gait habits. We anticipate that the proposed method will help provide more intuitive speed adaptive control for rehabilitation robots, especially intelligent lower limb prostheses.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":"11-20"},"PeriodicalIF":0.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of muscular-invasive bladder cancer using multi-view fusion self-distillation model based on 3D T2-Weighted images. 利用基于三维 T2 加权图像的多视角融合自失真模型预测肌肉浸润性膀胱癌。
Biomedizinische Technik. Biomedical engineering Pub Date : 2024-11-06 Print Date: 2025-02-25 DOI: 10.1515/bmt-2024-0333
Yuan Zou, Jie Yu, Lingkai Cai, Chunxiao Chen, Ruoyu Meng, Yueyue Xiao, Xue Fu, Xiao Yang, Peikun Liu, Qiang Lu
{"title":"Prediction of muscular-invasive bladder cancer using multi-view fusion self-distillation model based on 3D T2-Weighted images.","authors":"Yuan Zou, Jie Yu, Lingkai Cai, Chunxiao Chen, Ruoyu Meng, Yueyue Xiao, Xue Fu, Xiao Yang, Peikun Liu, Qiang Lu","doi":"10.1515/bmt-2024-0333","DOIUrl":"10.1515/bmt-2024-0333","url":null,"abstract":"<p><strong>Objectives: </strong>Accurate preoperative differentiation between non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) is crucial for surgical decision-making in bladder cancer (BCa) patients. MIBC diagnosis relies on the Vesical Imaging-Reporting and Data System (VI-RADS) in clinical using multi-parametric MRI (mp-MRI). Given the absence of some sequences in practice, this study aims to optimize the existing T2-weighted imaging (T2WI) sequence to assess MIBC accurately.</p><p><strong>Methods: </strong>We analyzed T2WI images from 615 BCa patients and developed a multi-view fusion self-distillation (MVSD) model that integrates transverse and sagittal views to classify MIBC and NMIBC. This 3D image classification method leverages z-axis information from 3D MRI volume, combining information from adjacent slices for comprehensive features extraction. Multi-view fusion enhances global information by mutually complementing and constraining information from the transverse and sagittal planes. Self-distillation allows shallow classifiers to learn valuable knowledge from deep layers, boosting feature extraction capability of the backbone and achieving better classification performance.</p><p><strong>Results: </strong>Compared to the performance of MVSD with classical deep learning methods and the state-of-the-art MRI-based BCa classification approaches, the proposed MVSD model achieves the highest area under the curve (AUC) 0.927 and accuracy (Acc) 0.880, respectively. DeLong's test shows that the AUC of the MVSD has statistically significant differences with the VGG16, Densenet, ResNet50, and 3D residual network. Furthermore, the Acc of the MVSD model is higher than that of the two urologists.</p><p><strong>Conclusions: </strong>Our proposed MVSD model performs satisfactorily distinguishing between MIBC and NMIBC, indicating significant potential in facilitating preoperative BCa diagnosis for urologists.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":"37-47"},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A software tool for fabricating phantoms mimicking human tissues with designated dielectric properties and frequency. 一种软件工具,用于制作具有指定介电特性和频率的人体组织模型。
Biomedizinische Technik. Biomedical engineering Pub Date : 2024-10-28 Print Date: 2025-02-25 DOI: 10.1515/bmt-2024-0043
Xinyue Zhang, Guofang Xu, Qiaotian Zhang, Henghui Liu, Xiang Nan, Jijun Han
{"title":"A software tool for fabricating phantoms mimicking human tissues with designated dielectric properties and frequency.","authors":"Xinyue Zhang, Guofang Xu, Qiaotian Zhang, Henghui Liu, Xiang Nan, Jijun Han","doi":"10.1515/bmt-2024-0043","DOIUrl":"10.1515/bmt-2024-0043","url":null,"abstract":"<p><strong>Objectives: </strong>Dielectric materials play a crucial role in assessing and refining the measurement performance of dielectric properties for specific tasks. The availability of viable and standardized dielectric materials could greatly enhance medical applications related to dielectric properties. However, obtaining reliable phantoms with designated dielectric properties across a specified frequency range remains challenging. In this study, we propose software to easily determine the components of dielectric materials in the frequency range of 16 MHz to 3 GHz.</p><p><strong>Methods: </strong>A total of 184 phantoms were fabricated and measured using open-ended coaxial probe method. The relationship among dielectric properties, frequency, and the components of dielectric materials was fitted through feedforward neural networks. Software was developed to quickly calculate the composition of dielectric materials.</p><p><strong>Results: </strong>We performed validation experiments including blood, muscle, skin, and lung tissue phantoms at 128 MHz, 298 MHz, 915 MHz, and 2.45 GHz. Compared with literature values, the relative errors of dielectric properties are less than 15 %.</p><p><strong>Conclusions: </strong>This study establishes a reliable method for fabricating dielectric materials with designated dielectric properties and frequency through the development of the software. This research holds significant importance in enhancing medical research and applications that rely on tissue simulation using dielectric phantoms.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":"61-70"},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Concept and development of a telemedical supervision system for anesthesiology in operating rooms using the interoperable communication standard ISO/IEEE 11073 SDC. 利用互操作通信标准 ISO/IEEE 11073 SDC,构思和开发手术室麻醉远程医疗监督系统。
Biomedizinische Technik. Biomedical engineering Pub Date : 2024-10-25 Print Date: 2025-02-25 DOI: 10.1515/bmt-2024-0378
Jonas Roth, Verena Voigt, Okan Yilmaz, Michael Schauwinhold, Michael Czaplik, Andreas Follmann, Carina B Pereira
{"title":"Concept and development of a telemedical supervision system for anesthesiology in operating rooms using the interoperable communication standard ISO/IEEE 11073 SDC.","authors":"Jonas Roth, Verena Voigt, Okan Yilmaz, Michael Schauwinhold, Michael Czaplik, Andreas Follmann, Carina B Pereira","doi":"10.1515/bmt-2024-0378","DOIUrl":"10.1515/bmt-2024-0378","url":null,"abstract":"<p><strong>Objectives: </strong>Discussion of a telemedical supervision system for anesthesiology in the operating room using the interoperable communication protocol SDC. Validation of a first conceptual demonstrator and highlight of strengths and weaknesses.</p><p><strong>Methods: </strong>The system includes relevant medical devices, a central anesthesia workstation (AN-WS), and a remote supervision workstation (SV-WS) and the concept uses the interoperability standard ISO/IEEE 11073 SDC. The validation method involves a human patient simulator, and the system is tested in an intervention study with 16 resident anesthetists supervised by a senior anesthetist.</p><p><strong>Results: </strong>This study presents a novel tele-supervision system that enables remote patient monitoring and communication between anesthesia providers and supervisors. It is composed of connected medical devices via SDC, a central AN-WS and a mobile remote SV-WS. The system is designed to handle multiple ORs and route the data to a single SV-WS. It enables audio/video connections and text chatting between the workstations and offers the supervisor to switch between cameras in the OR. Through a validation study the feasibility and usefulness of the system was assessed.</p><p><strong>Conclusions: </strong>Validation results highlighted, that such system might not replace physically present supervisors but is able to provide supervision for scenarios where supervision is currently not available or only under adverse circumstances.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":"91-101"},"PeriodicalIF":0.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信