{"title":"Design and optimization of a high-definition transcranial electrical stimulation device with envelope wave.","authors":"Renling Zou, Linpeng Jin, Yuhao Liu, Liang Zhao, Li Cao, Xiufang Hu, Xuezhi Yin","doi":"10.1515/bmt-2024-0284","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Transcranial electrical stimulation (tES) has been widely used in neuroscience research, and the spatial focusing and penetration of the process are currently the main constraints on the effectiveness of treatment.</p><p><strong>Methods: </strong>A high-definition electrical stimulation (HD-tES) device with envelope waves was designed. The device utilized a 4 × 1 electrode structure and was designed with an impedance adjustment circuit to evenly distribute the current among the four return channels. The output performance and safety of the device were verified in in vitro experiments. The spatial focusing of the 4 × 1 electrode structure and the high penetration advantage of envelope waves are explored through simulations. Finally, experiments were performed on 10 healthy adults.</p><p><strong>Results: </strong>The 4 × 1 electrode structure has the best spatial focusing effect. Current frequencies above 1 kHz may have higher tissue penetration. In addition, the safety of envelope wave stimulation has been verified in human trials, and no adverse reactions occurred during stimulation.</p><p><strong>Conclusions: </strong>The low and medium frequency (<10 kHz) envelope wave HD-tES device is expected to have a positive impact in the field of medicine and neuroscience.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedizinische Technik. Biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmt-2024-0284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Transcranial electrical stimulation (tES) has been widely used in neuroscience research, and the spatial focusing and penetration of the process are currently the main constraints on the effectiveness of treatment.
Methods: A high-definition electrical stimulation (HD-tES) device with envelope waves was designed. The device utilized a 4 × 1 electrode structure and was designed with an impedance adjustment circuit to evenly distribute the current among the four return channels. The output performance and safety of the device were verified in in vitro experiments. The spatial focusing of the 4 × 1 electrode structure and the high penetration advantage of envelope waves are explored through simulations. Finally, experiments were performed on 10 healthy adults.
Results: The 4 × 1 electrode structure has the best spatial focusing effect. Current frequencies above 1 kHz may have higher tissue penetration. In addition, the safety of envelope wave stimulation has been verified in human trials, and no adverse reactions occurred during stimulation.
Conclusions: The low and medium frequency (<10 kHz) envelope wave HD-tES device is expected to have a positive impact in the field of medicine and neuroscience.