Biomaterials researchPub Date : 2025-08-12eCollection Date: 2025-01-01DOI: 10.34133/bmr.0238
Yeonjeong Kim, Kyung Min Park
{"title":"Zinc Peroxide-Mediated In Situ Forming Hydrogels for Endogenous Tissue Regeneration.","authors":"Yeonjeong Kim, Kyung Min Park","doi":"10.34133/bmr.0238","DOIUrl":"10.34133/bmr.0238","url":null,"abstract":"<p><p>Bioactive hydrogels have garnered considerable attention for endogenous tissue regeneration owing to their affordability, minimal regulatory barriers, and ability to harness the body's intrinsic healing potential. Recently, inorganic-ion-releasing hydrogels have been developed as bioactive matrices, promoting wound healing and tissue repair through external cellular stimulation. Among various therapeutic inorganic ions, zinc ions (Zn<sup>2+</sup>), in particular, play essential roles in wound healing by modulating cell proliferation and angiogenesis and facilitating tissue remodeling. Numerous strategies have been developed to fabricate Zn<sup>2+</sup>-releasing biomaterials; however, these methods often encounter challenges, including complex fabrication processes, rapid ion release, and limited mechanical stability. To address these challenges, we developed a novel Zn<sup>2+</sup>-releasing bioactive hydrogel (Zn-Gel) as a bioactive matrix that supported wound healing via a zinc peroxide (ZnO<sub>2</sub>)-mediated cross-linking reaction. Zn-Gel was fabricated by combining thiolated gelatin with ZnO<sub>2</sub> solutions, forming a hydrogel with controllable Zn<sup>2+</sup> release kinetics that depended on ZnO<sub>2</sub> concentration and enabled sustained release of Zn<sup>2+</sup> for up to 14 d. Zn-Gel demonstrated excellent cytocompatibility and tissue compatibility in both in vitro and in vivo studies. Interestingly, Zn-Gel accelerated wound healing by promoting cell proliferation, blood vessel formation, hair follicle formation, and collagen deposition. Therefore, Zn-Gel holds great potential as an advanced bioactive material for wound healing and tissue regeneration.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0238"},"PeriodicalIF":9.6,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144839369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tryptamine-Functionalized Lipid Nanocarriers Co-delivering SMO/BRD4 Inhibitors for Synergistic Medulloblastoma Therapy.","authors":"Qiyue Wang, Zixu Cui, Chenguang Guo, Yue Zhang, Jinhua Chen, Ruitao Zhang, Xueming Li, Zhengjie Meng, Hao Ren","doi":"10.34133/bmr.0237","DOIUrl":"10.34133/bmr.0237","url":null,"abstract":"<p><p>The management of medulloblastoma (MB) remains a significant challenge, primarily attributed to the presence of cancer stem cells and the inadequate delivery of therapeutic agents across the blood-brain barrier. GLI, as a regulator of the hedgehog signaling pathway in normal cerebellum development, also exerts pivotal functions in MB initiation, progression, and metastasis and maintains the stemness of MB stem cells. In this study, we devised a combined therapeutic approach by integrating the BRD4 inhibitor JQ1 with the SMO inhibitor saikosaponin B1 (SSB1) to inhibit MB via regulation of GLI activation. The results suggested that JQ1 and SSB1 synergistically inhibited MB proliferation, constricted MB metastasis, and down-regulated stem cell phenotypes via reduced GLI and MYC expression. Tryptamine-derived lipid nanoparticles (NPs) transported JQ1 and SSB1 to MB tissues. The targeted NPs demonstrated prolonged drug release kinetics and significantly improved their accumulation in MB tumors. Systemic administration of drug-loaded targeted NPs significantly decreased tumor burden without hepatic toxicity in xenograft MB-bearing mice. The combination of JQ1 and SSB1 presents an innovative therapeutic paradigm for suppressing MB proliferation, recurrence, and metastasis, with the potential to drive the development of novel MB treatment strategies in the future.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0237"},"PeriodicalIF":9.6,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144818647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomaterials researchPub Date : 2025-08-08eCollection Date: 2025-01-01DOI: 10.34133/bmr.0232
Yafei Zhang, Chaoqi Liu, Shuai Jin, Liangyun Xie, Qianwen Xiao, Jun Yao
{"title":"Ultrasound-Targeted Nanobubbles Codelivering NKP-1339 and miR-142-5p for Synergistic Mitochondrial Immunogenic Cell Death and PD-L1 Inhibition in Cancer Therapy.","authors":"Yafei Zhang, Chaoqi Liu, Shuai Jin, Liangyun Xie, Qianwen Xiao, Jun Yao","doi":"10.34133/bmr.0232","DOIUrl":"10.34133/bmr.0232","url":null,"abstract":"<p><p>The combination of chemical immunotherapy and gene therapy holds great promise for malignant tumor treatment. Here, we developed an ultrasound-targeted liposome nanobubbles system (NKP-1339/miR-142-NBs) for precise codelivery of drugs and genes to treat esophageal squamous cell carcinoma (ESCC) with ultrasound-targeted microbubble destruction (UTMD). This study systematically investigated the system's therapeutic mechanisms-including mitochondrial dysfunction induction, immunogenic cell death (ICD), and antitumor immune activation-alongside its pharmacokinetics and targeting efficiency. In an ESCC mouse model, NKP-1339/miR-142-NBs combined with ultrasound markedly suppressed tumor growth (79.72% ± 0.1% vs. NB control 18.79% ± 1.29%) through NKP-1339 triggering ICD and miR-142-5p down-regulating programmed death-ligand 1 (PD-L1) expression, synergistically potentiating immune responses. Furthermore, we found that triggering ICD, including the exposure of calreticulin on the cell membrane, was related to altering mitochondrial fission dynamics in the ESCC cells. The down-regulation of PD-L1 expression by miR-142-5p reactivated CD8<sup>+</sup> T cells by relieving programmed death-1 (PD-1)/PD-L1-mediated immunosuppression, enhancing immune memory and antitumor efficacy. Moreover, the UTMD technique enhanced the tumoral accumulation and penetration of nanobubbles, improving delivery specificity and minimizing off-target effects. This combined treatment strategy, including UTMD, provides a promising translational potential for ESCC therapy.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0232"},"PeriodicalIF":9.6,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144818648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting ZBP1-Mediated PANoptosis: Inflammation-Responsive Selenized Chitosan Nanoparticles Loaded with Moringa A for Antiviral Pneumonia Therapy.","authors":"Wenhui Wu, Ruidong Li, Chunmei Lv, Dandan Yang, Shunqiang Song, Min Yang, Yongai Xiong","doi":"10.34133/bmr.0234","DOIUrl":"10.34133/bmr.0234","url":null,"abstract":"<p><p>Viral pneumonia poses a major global public health challenge, where excessive inflammatory responses contribute to tissue damage and respiratory failure. Inflammation-responsive nanoparticles can target inflamed areas, improving drug delivery while minimizing side effects. Chitosan, a biocompatible polysaccharide with anti-inflammatory and immunomodulatory properties, gains enhanced antioxidant and anti-inflammatory capabilities when combined with selenium. This study developed selenium-chitosan nanoparticles loaded with Moringa A (MA), a natural antiviral compound from <i>Moringa oleifera</i> seeds. These nanoparticles target lung inflammation, releasing MA to suppress viral replication and infection while reducing inflammatory responses. Additionally, selenium-chitosan nanoparticles mitigate oxidative stress, regulate immunity, and inhibit PANoptosis-a cell death pathway that exacerbates inflammation. By blocking core proteins in this pathway, they further curb inflammatory factor release. This approach offers a promising therapeutic strategy for viral pneumonia, combining targeted drug delivery, antiviral action, and inflammation control with reduced side effects.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0234"},"PeriodicalIF":9.6,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12323157/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144791017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomaterials researchPub Date : 2025-07-31eCollection Date: 2025-01-01DOI: 10.34133/bmr.0227
Seong-Jong Kim, Byeongmoon Jeong, Ki Dong Park, Sei Kwang Hahn, Insup Noh
{"title":"Smart Biomaterials for Delivery of Drugs and Cells.","authors":"Seong-Jong Kim, Byeongmoon Jeong, Ki Dong Park, Sei Kwang Hahn, Insup Noh","doi":"10.34133/bmr.0227","DOIUrl":"10.34133/bmr.0227","url":null,"abstract":"","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0227"},"PeriodicalIF":9.6,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12311304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144762671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomaterials researchPub Date : 2025-07-22eCollection Date: 2025-01-01DOI: 10.34133/bmr.0219
Hyewon Kim, Khandoker Asiqur Rahaman, Jieun Kwon, Seohyeon Cho, Seok Chung, Hyung-Seop Han, Yu-Chan Kim
{"title":"Metal-Based Regenerative Strategies for Peripheral Nerve Injuries: From Biodegradable Ion Source to Stable Conductive Implants.","authors":"Hyewon Kim, Khandoker Asiqur Rahaman, Jieun Kwon, Seohyeon Cho, Seok Chung, Hyung-Seop Han, Yu-Chan Kim","doi":"10.34133/bmr.0219","DOIUrl":"10.34133/bmr.0219","url":null,"abstract":"<p><p>Peripheral nerve injury is a common health issue in modern aging societies, with the only treatment available being autograft transplantation. Unfortunately, autograft is often limited due to donor availability and immune rejection. Additionally, the peripheral nervous system has limited regenerative capacity, making the treatment of peripheral nerve injuries challenging. Metal-based regenerative medicine and tissue engineering strategies provide advanced solutions to the problem. Metal-based biomaterials such as conduits, filaments, alloys, hydrogels, and ceramics can deliver biofunctional metal ions and promote axonal growth and functional recovery. In parallel, metal-based electromagnetic stimulation demonstrates potential for nerve regeneration and inflammation regulation. The potential of metal-based biomaterials in promoting peripheral nerve regeneration highlights the need for further research in tissue engineering and regenerative medicine. However, rapid degradation, long-term biocompatibility, and necessary optimization regarding injury types remain to be explored. This review summarizes the reported metal-based biomaterials utilized in peripheral nerve regeneration research. The aim is to showcase advanced technologies available in the field, which may potentially become a viable alternative to autografts, offering transformative applications in the regenerative medical field.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0219"},"PeriodicalIF":8.1,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12280558/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144692753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Epitranscriptomic Modulation of TET2 Inhibition Suppressed SARS-CoV-2 Infection and Blocked Viral Nucleocapsid Protein in Induced-Pluripotent-Stem-Cell-Derived Cardiomyocyte Screening Models.","authors":"Yi-Ping Yang, Chia-Hao Wang, Jun-Ren Sun, Yueh Chien, Chian-Shiu Chien, Guang-Yuh Chiou, Yun-Hsiang Cheng, Wen-Ting Chen, Ping-Cheng Liu, Shan-Ko Tsai, I-Hsun Chiang, Jui-Chia Wang, Huan Ou-Yang, Lo-Jei Ching, Wen-Liang Lo, Chien-Ying Wang, Hsin-Bang Leu, Chiu-Yang Lee, Shih-Hwa Chiou","doi":"10.34133/bmr.0229","DOIUrl":"10.34133/bmr.0229","url":null,"abstract":"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection has been associated with severe cardiovascular complications. However, the role of epitranscriptional modulation involved in SARS-CoV-2-infected myocarditis is still unclear. Ten-eleven translocation 2 (TET2), a methylcytosine dioxygenase, plays key roles in DNA demethylation during viral infection and host-virus interactions. Using human-induced-pluripotent-stem-cell-derived cardiomyocytes (hiPSC-CMs) as a platform, our data revealed the epitranscriptomic role of TET2 during SARS-CoV-2 infection. First, our RNA sequencing analysis revealed the alterations of the messenger-RNA-expression profiles of epitranscriptomic regulators, including TET2, in hiPSC-CMs during SARS-CoV-2 infection. Second, silencing TET2 markedly reduced both the messenger RNA and protein levels of the viral nucleocapsid (N) protein, leading to attenuated viral replication in infected hiPSC-CMs. Furthermore, RNA dot-blotting analysis revealed that TET2 knockdown suppressed the levels of 5-hydroxymethylcytosine in SARS-CoV-2-infected hiPSC-CMs. To further explore the therapeutic relevance of TET2 inhibition in suppressing SARS-CoV-2 infection, we screened and compared 3 structurally distinct TET2 enzymatic inhibitors: Bobcat339, TETi76, and TFMB-2HG. Among these, Bobcat339 demonstrated the most potent antiviral effect, markedly suppressing SARS-CoV-2 replication and N-protein expression. Molecular docking analysis revealed that Bobcat339 exhibited a high binding affinity for multiple viral targets, including nsp16, RdRp, and N protein, indicating a multitarget mechanism of action. In addition, our data demonstrated that treatment with Bobcat339 can suppress SARS-CoV-2 infectious activity and N-protein expression in infected hiPSC-CMs. Together, our findings highlight the regulatory role of TET2 in SARS-CoV-2 infection and identify Bobcat339 as a promising therapeutic compound. Understanding TET2-driven epitranscriptomics and the functions of TET-targeting inhibitors may provide a novel strategy for mitigating viral infection in SARS-CoV-2-induced cardiomyopathy.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0229"},"PeriodicalIF":8.1,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12280876/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144692751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomaterials researchPub Date : 2025-07-22eCollection Date: 2025-01-01DOI: 10.34133/bmr.0231
Hyeon Jeong Kang, Woo Gyeong Kim, Seong Yeong An, Jae-Hyung Lee, Dong Nyoung Heo, Yu-Shik Hwang
{"title":"Keratin-Mediated Selective Inhibition in Proliferation and Selective Apoptosis of Keloid Fibroblasts.","authors":"Hyeon Jeong Kang, Woo Gyeong Kim, Seong Yeong An, Jae-Hyung Lee, Dong Nyoung Heo, Yu-Shik Hwang","doi":"10.34133/bmr.0231","DOIUrl":"10.34133/bmr.0231","url":null,"abstract":"<p><p>Keloids are pathological scars characterized by excessive proliferation of fibroblasts and abnormal extracellular matrix (ECM) accumulation, largely mediated by transforming growth factor-β1 (TGF-β1). Current therapeutic approaches often fail due to high recurrence and limited selectivity. Here, we investigate the potential of human hair-derived keratin (HK) as a biomaterial with selective anti-fibrotic activity. Using multiple in vitro models including 2D monolayers, 3D spheroids, fibroblast-keratinocyte coculture, and collagen gel contraction, we evaluated the effects of 0.5% HK on keloid fibroblasts (KFs) and normal dermal fibroblasts (DFs), with and without TGF-β1 stimulation. HK selectively inhibited KF proliferation, viability, and migration while sparing DF. In 3D models, HK significantly reduced KF-mediated spheroid expansion and collagen matrix contraction, even under profibrotic stimulation. Mechanistically, HK activated intrinsic apoptotic signaling, up-regulating pro-apoptotic proteins (Bax, caspase-3, CYCS) and down-regulating Bcl-2 and XIAP. Transcriptomic profiling revealed that HK down-regulated pathways associated with ECM-receptor interaction, focal adhesion, and aminoacyl-tRNA biosynthesis in KF, suggesting a dual modulation of fibrotic remodeling and mitochondrial function. These findings demonstrate that HK exerts selective anti-fibrotic and pro-apoptotic effects on pathological fibroblasts, with minimal impact on normal cells. By modulating both ECM organization and cell survival pathways, keratin demonstrates strong potential as a therapeutic biomaterial for targeted keloid treatment.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0231"},"PeriodicalIF":8.1,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282147/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144692752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomaterials researchPub Date : 2025-07-18eCollection Date: 2025-01-01DOI: 10.34133/bmr.0228
Yunqing Pang, Jia Guo, Qianlong Ma, Jing Qi, Lv Liu, Yinzhong Bu, Jing Wang
{"title":"Hyaluronic Acid-Functionalized Bismuth Vanadate/Molybdenum Disulfide Nanoheterojunctions Achieve Efficient Phototherapy of Hypoxic Tumor.","authors":"Yunqing Pang, Jia Guo, Qianlong Ma, Jing Qi, Lv Liu, Yinzhong Bu, Jing Wang","doi":"10.34133/bmr.0228","DOIUrl":"10.34133/bmr.0228","url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is a promising cancer treatment modality due to its minimally invasive nature and spatiotemporal selectivity. However, its effectiveness is substantially hindered by tumor hypoxia. In this study, bismuth vanadate/molybdenum disulfide@hyaluronic acid (BiVO<sub>4</sub>/MoS<sub>2</sub>@HA, BM@HA) nanoparticles were engineered to overcome the challenges of tumor hypoxia in PDT. The formation of p-n heterojunctions between MoS<sub>2</sub> and BiVO<sub>4</sub> facilitated electron transfer from MoS<sub>2</sub> to BiVO<sub>4</sub>, imparting BM@HA with photothermal properties in the near-infrared (NIR) region and achieving an improved photothermal efficiency of 51.9%. After 808-nm laser irradiation, the electron transfers and the energy generated by photothermal effects enhanced the separation of electron-hole pairs in BM@HA, leading to the production of reactive oxygen species and the hydrolysis of oxygen. Animal experiments revealed the strong tumor-targeting capability of BM@HA, as shown by tumor photothermal imaging and in vivo small-animal imaging. Following 808-nm laser irradiation, it enabled precise tumor phototherapy by combining PDT with photothermal therapy. Furthermore, proteomic analysis revealed that BM@HA + NIR may induce necroptosis of tumor cells by activating peptidylprolyl isomerase D-related pathways. In summary, the BM@HA photosensitizer facilitated NIR photocatalytic oxygen hydrolysis, overcoming the hypoxia limitation in PDT. When combined with photothermal therapy, it displayed improved antitumor efficacy, offering a new strategy for the treatment of oral squamous cell carcinoma.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0228"},"PeriodicalIF":8.1,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144676843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}