Yunqing Pang, Jia Guo, Qianlong Ma, Jing Qi, Lv Liu, Yinzhong Bu, Jing Wang
{"title":"透明质酸功能化钒酸铋/二硫化钼纳米异质结实现缺氧肿瘤的高效光疗。","authors":"Yunqing Pang, Jia Guo, Qianlong Ma, Jing Qi, Lv Liu, Yinzhong Bu, Jing Wang","doi":"10.34133/bmr.0228","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is a promising cancer treatment modality due to its minimally invasive nature and spatiotemporal selectivity. However, its effectiveness is substantially hindered by tumor hypoxia. In this study, bismuth vanadate/molybdenum disulfide@hyaluronic acid (BiVO<sub>4</sub>/MoS<sub>2</sub>@HA, BM@HA) nanoparticles were engineered to overcome the challenges of tumor hypoxia in PDT. The formation of p-n heterojunctions between MoS<sub>2</sub> and BiVO<sub>4</sub> facilitated electron transfer from MoS<sub>2</sub> to BiVO<sub>4</sub>, imparting BM@HA with photothermal properties in the near-infrared (NIR) region and achieving an improved photothermal efficiency of 51.9%. After 808-nm laser irradiation, the electron transfers and the energy generated by photothermal effects enhanced the separation of electron-hole pairs in BM@HA, leading to the production of reactive oxygen species and the hydrolysis of oxygen. Animal experiments revealed the strong tumor-targeting capability of BM@HA, as shown by tumor photothermal imaging and in vivo small-animal imaging. Following 808-nm laser irradiation, it enabled precise tumor phototherapy by combining PDT with photothermal therapy. Furthermore, proteomic analysis revealed that BM@HA + NIR may induce necroptosis of tumor cells by activating peptidylprolyl isomerase D-related pathways. In summary, the BM@HA photosensitizer facilitated NIR photocatalytic oxygen hydrolysis, overcoming the hypoxia limitation in PDT. When combined with photothermal therapy, it displayed improved antitumor efficacy, offering a new strategy for the treatment of oral squamous cell carcinoma.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0228"},"PeriodicalIF":9.6000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271743/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hyaluronic Acid-Functionalized Bismuth Vanadate/Molybdenum Disulfide Nanoheterojunctions Achieve Efficient Phototherapy of Hypoxic Tumor.\",\"authors\":\"Yunqing Pang, Jia Guo, Qianlong Ma, Jing Qi, Lv Liu, Yinzhong Bu, Jing Wang\",\"doi\":\"10.34133/bmr.0228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photodynamic therapy (PDT) is a promising cancer treatment modality due to its minimally invasive nature and spatiotemporal selectivity. However, its effectiveness is substantially hindered by tumor hypoxia. In this study, bismuth vanadate/molybdenum disulfide@hyaluronic acid (BiVO<sub>4</sub>/MoS<sub>2</sub>@HA, BM@HA) nanoparticles were engineered to overcome the challenges of tumor hypoxia in PDT. The formation of p-n heterojunctions between MoS<sub>2</sub> and BiVO<sub>4</sub> facilitated electron transfer from MoS<sub>2</sub> to BiVO<sub>4</sub>, imparting BM@HA with photothermal properties in the near-infrared (NIR) region and achieving an improved photothermal efficiency of 51.9%. After 808-nm laser irradiation, the electron transfers and the energy generated by photothermal effects enhanced the separation of electron-hole pairs in BM@HA, leading to the production of reactive oxygen species and the hydrolysis of oxygen. Animal experiments revealed the strong tumor-targeting capability of BM@HA, as shown by tumor photothermal imaging and in vivo small-animal imaging. Following 808-nm laser irradiation, it enabled precise tumor phototherapy by combining PDT with photothermal therapy. Furthermore, proteomic analysis revealed that BM@HA + NIR may induce necroptosis of tumor cells by activating peptidylprolyl isomerase D-related pathways. In summary, the BM@HA photosensitizer facilitated NIR photocatalytic oxygen hydrolysis, overcoming the hypoxia limitation in PDT. When combined with photothermal therapy, it displayed improved antitumor efficacy, offering a new strategy for the treatment of oral squamous cell carcinoma.</p>\",\"PeriodicalId\":93902,\"journal\":{\"name\":\"Biomaterials research\",\"volume\":\"29 \",\"pages\":\"0228\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271743/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmr.0228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Photodynamic therapy (PDT) is a promising cancer treatment modality due to its minimally invasive nature and spatiotemporal selectivity. However, its effectiveness is substantially hindered by tumor hypoxia. In this study, bismuth vanadate/molybdenum disulfide@hyaluronic acid (BiVO4/MoS2@HA, BM@HA) nanoparticles were engineered to overcome the challenges of tumor hypoxia in PDT. The formation of p-n heterojunctions between MoS2 and BiVO4 facilitated electron transfer from MoS2 to BiVO4, imparting BM@HA with photothermal properties in the near-infrared (NIR) region and achieving an improved photothermal efficiency of 51.9%. After 808-nm laser irradiation, the electron transfers and the energy generated by photothermal effects enhanced the separation of electron-hole pairs in BM@HA, leading to the production of reactive oxygen species and the hydrolysis of oxygen. Animal experiments revealed the strong tumor-targeting capability of BM@HA, as shown by tumor photothermal imaging and in vivo small-animal imaging. Following 808-nm laser irradiation, it enabled precise tumor phototherapy by combining PDT with photothermal therapy. Furthermore, proteomic analysis revealed that BM@HA + NIR may induce necroptosis of tumor cells by activating peptidylprolyl isomerase D-related pathways. In summary, the BM@HA photosensitizer facilitated NIR photocatalytic oxygen hydrolysis, overcoming the hypoxia limitation in PDT. When combined with photothermal therapy, it displayed improved antitumor efficacy, offering a new strategy for the treatment of oral squamous cell carcinoma.