透明质酸功能化钒酸铋/二硫化钼纳米异质结实现缺氧肿瘤的高效光疗。

IF 9.6 Q1 ENGINEERING, BIOMEDICAL
Biomaterials research Pub Date : 2025-07-18 eCollection Date: 2025-01-01 DOI:10.34133/bmr.0228
Yunqing Pang, Jia Guo, Qianlong Ma, Jing Qi, Lv Liu, Yinzhong Bu, Jing Wang
{"title":"透明质酸功能化钒酸铋/二硫化钼纳米异质结实现缺氧肿瘤的高效光疗。","authors":"Yunqing Pang, Jia Guo, Qianlong Ma, Jing Qi, Lv Liu, Yinzhong Bu, Jing Wang","doi":"10.34133/bmr.0228","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is a promising cancer treatment modality due to its minimally invasive nature and spatiotemporal selectivity. However, its effectiveness is substantially hindered by tumor hypoxia. In this study, bismuth vanadate/molybdenum disulfide@hyaluronic acid (BiVO<sub>4</sub>/MoS<sub>2</sub>@HA, BM@HA) nanoparticles were engineered to overcome the challenges of tumor hypoxia in PDT. The formation of p-n heterojunctions between MoS<sub>2</sub> and BiVO<sub>4</sub> facilitated electron transfer from MoS<sub>2</sub> to BiVO<sub>4</sub>, imparting BM@HA with photothermal properties in the near-infrared (NIR) region and achieving an improved photothermal efficiency of 51.9%. After 808-nm laser irradiation, the electron transfers and the energy generated by photothermal effects enhanced the separation of electron-hole pairs in BM@HA, leading to the production of reactive oxygen species and the hydrolysis of oxygen. Animal experiments revealed the strong tumor-targeting capability of BM@HA, as shown by tumor photothermal imaging and in vivo small-animal imaging. Following 808-nm laser irradiation, it enabled precise tumor phototherapy by combining PDT with photothermal therapy. Furthermore, proteomic analysis revealed that BM@HA + NIR may induce necroptosis of tumor cells by activating peptidylprolyl isomerase D-related pathways. In summary, the BM@HA photosensitizer facilitated NIR photocatalytic oxygen hydrolysis, overcoming the hypoxia limitation in PDT. When combined with photothermal therapy, it displayed improved antitumor efficacy, offering a new strategy for the treatment of oral squamous cell carcinoma.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0228"},"PeriodicalIF":9.6000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271743/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hyaluronic Acid-Functionalized Bismuth Vanadate/Molybdenum Disulfide Nanoheterojunctions Achieve Efficient Phototherapy of Hypoxic Tumor.\",\"authors\":\"Yunqing Pang, Jia Guo, Qianlong Ma, Jing Qi, Lv Liu, Yinzhong Bu, Jing Wang\",\"doi\":\"10.34133/bmr.0228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photodynamic therapy (PDT) is a promising cancer treatment modality due to its minimally invasive nature and spatiotemporal selectivity. However, its effectiveness is substantially hindered by tumor hypoxia. In this study, bismuth vanadate/molybdenum disulfide@hyaluronic acid (BiVO<sub>4</sub>/MoS<sub>2</sub>@HA, BM@HA) nanoparticles were engineered to overcome the challenges of tumor hypoxia in PDT. The formation of p-n heterojunctions between MoS<sub>2</sub> and BiVO<sub>4</sub> facilitated electron transfer from MoS<sub>2</sub> to BiVO<sub>4</sub>, imparting BM@HA with photothermal properties in the near-infrared (NIR) region and achieving an improved photothermal efficiency of 51.9%. After 808-nm laser irradiation, the electron transfers and the energy generated by photothermal effects enhanced the separation of electron-hole pairs in BM@HA, leading to the production of reactive oxygen species and the hydrolysis of oxygen. Animal experiments revealed the strong tumor-targeting capability of BM@HA, as shown by tumor photothermal imaging and in vivo small-animal imaging. Following 808-nm laser irradiation, it enabled precise tumor phototherapy by combining PDT with photothermal therapy. Furthermore, proteomic analysis revealed that BM@HA + NIR may induce necroptosis of tumor cells by activating peptidylprolyl isomerase D-related pathways. In summary, the BM@HA photosensitizer facilitated NIR photocatalytic oxygen hydrolysis, overcoming the hypoxia limitation in PDT. When combined with photothermal therapy, it displayed improved antitumor efficacy, offering a new strategy for the treatment of oral squamous cell carcinoma.</p>\",\"PeriodicalId\":93902,\"journal\":{\"name\":\"Biomaterials research\",\"volume\":\"29 \",\"pages\":\"0228\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271743/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmr.0228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

光动力疗法(PDT)因其微创性和时空选择性而成为一种很有前途的癌症治疗方式。然而,其有效性受到肿瘤缺氧的严重阻碍。在这项研究中,设计了钒酸铋/钼disulfide@hyaluronic酸(BiVO4/MoS2@HA, BM@HA)纳米颗粒来克服PDT中肿瘤缺氧的挑战。MoS2和BiVO4之间p-n异质结的形成促进了电子从MoS2向BiVO4的转移,使BM@HA在近红外(NIR)区域具有光热性能,光热效率提高了51.9%。808 nm激光照射后,电子转移和光热效应产生的能量增强了BM@HA中电子-空穴对的分离,导致活性氧的产生和氧的水解。动物实验显示BM@HA具有很强的肿瘤靶向能力,肿瘤光热成像和体内小动物成像均显示。在808 nm激光照射后,通过PDT与光热疗法的结合,实现了精确的肿瘤光疗。此外,蛋白质组学分析显示BM@HA + NIR可能通过激活肽基脯氨酸异构酶d相关途径诱导肿瘤细胞坏死。综上所述,BM@HA光敏剂促进了近红外光催化氧水解,克服了PDT中的缺氧限制。与光热疗法联合使用时,其抗肿瘤效果明显提高,为口腔鳞状细胞癌的治疗提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyaluronic Acid-Functionalized Bismuth Vanadate/Molybdenum Disulfide Nanoheterojunctions Achieve Efficient Phototherapy of Hypoxic Tumor.

Photodynamic therapy (PDT) is a promising cancer treatment modality due to its minimally invasive nature and spatiotemporal selectivity. However, its effectiveness is substantially hindered by tumor hypoxia. In this study, bismuth vanadate/molybdenum disulfide@hyaluronic acid (BiVO4/MoS2@HA, BM@HA) nanoparticles were engineered to overcome the challenges of tumor hypoxia in PDT. The formation of p-n heterojunctions between MoS2 and BiVO4 facilitated electron transfer from MoS2 to BiVO4, imparting BM@HA with photothermal properties in the near-infrared (NIR) region and achieving an improved photothermal efficiency of 51.9%. After 808-nm laser irradiation, the electron transfers and the energy generated by photothermal effects enhanced the separation of electron-hole pairs in BM@HA, leading to the production of reactive oxygen species and the hydrolysis of oxygen. Animal experiments revealed the strong tumor-targeting capability of BM@HA, as shown by tumor photothermal imaging and in vivo small-animal imaging. Following 808-nm laser irradiation, it enabled precise tumor phototherapy by combining PDT with photothermal therapy. Furthermore, proteomic analysis revealed that BM@HA + NIR may induce necroptosis of tumor cells by activating peptidylprolyl isomerase D-related pathways. In summary, the BM@HA photosensitizer facilitated NIR photocatalytic oxygen hydrolysis, overcoming the hypoxia limitation in PDT. When combined with photothermal therapy, it displayed improved antitumor efficacy, offering a new strategy for the treatment of oral squamous cell carcinoma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信