Biomaterials researchPub Date : 2025-02-11eCollection Date: 2025-01-01DOI: 10.34133/bmr.0144
Heejin Ha, Yonghyun Choi, Na-Hyeon Kim, Jiwon Kim, Jaehee Jang, Tagbo H R Niepa, Masayoshi Tanaka, Hee-Young Lee, Jonghoon Choi
{"title":"Lipid Nanoparticle Delivery System for Normalization of Tumor Microenvironment and Tumor Vascular Structure.","authors":"Heejin Ha, Yonghyun Choi, Na-Hyeon Kim, Jiwon Kim, Jaehee Jang, Tagbo H R Niepa, Masayoshi Tanaka, Hee-Young Lee, Jonghoon Choi","doi":"10.34133/bmr.0144","DOIUrl":"10.34133/bmr.0144","url":null,"abstract":"<p><p>Tumors grow by receiving oxygen and nutrients from the surrounding blood vessels, leading to rapid angiogenesis. This results in functionally and structurally abnormal vasculature characterized by high permeability and irregular blood flow, causing hypoxia within the tumor microenvironment (TME). Hypoxia exacerbates the secretion of pro-angiogenic factors such as vascular endothelial growth factor (VEGF), further perpetuating abnormal vessel formation. This environment compromises the efficacy of radiotherapy, immunotherapy, and chemotherapy. In this study, we developed a pH-sensitive liposome (PSL) system, termed OD_PSL@AKB, to co-deliver oxygen (OD) and razuprotafib (AKB-9778) to tumors. This system rapidly responds to the acidic TME to alleviate hypoxia and inhibit VEGF secretion, restoring VE-cadherin expression in hypoxic endothelial cell/cancer cell cocultures. Our findings highlight the potential of OD_PSL@AKB in normalizing tumor vasculature and improving therapeutic efficacy.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0144"},"PeriodicalIF":8.1,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811622/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomaterials researchPub Date : 2025-02-11eCollection Date: 2025-01-01DOI: 10.34133/bmr.0143
Dong Luo, Hui-Qi Zhang, Xin-Yang Xuanyuan, Dan Deng, Zheng-Mao Lu, Wen-Shang Liu, Meng Li
{"title":"MXene-Derived Multifunctional Biomaterials: New Opportunities for Wound Healing.","authors":"Dong Luo, Hui-Qi Zhang, Xin-Yang Xuanyuan, Dan Deng, Zheng-Mao Lu, Wen-Shang Liu, Meng Li","doi":"10.34133/bmr.0143","DOIUrl":"10.34133/bmr.0143","url":null,"abstract":"<p><p>The process of wound healing is frequently impeded by metabolic imbalances within the wound microenvironment. MXenes exhibit exceptional biocompatibility, biodegradability, photothermal conversion efficiency, conductivity, and adaptable surface functionalization, demonstrating marked potential in the development of multifunctional platforms for wound healing. Moreover, the integration of MXenes with other bioactive nanomaterials has been shown to enhance their therapeutic efficacy, paving the way for innovative approaches to wound healing. In this review, we provide a systematic exposition of the mechanisms through which MXenes facilitate wound healing and offer a comprehensive analysis of the current research landscape on MXene-based multifunctional bioactive composites in this field. By delving into the latest scientific discoveries, we identify the existing challenges and potential future trajectories for the advancement of MXenes. Our comprehensive evaluation aims to provide insightful guidance for the formulation of more effective wound healing strategies.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0143"},"PeriodicalIF":8.1,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811641/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomaterials researchPub Date : 2025-02-07eCollection Date: 2025-01-01DOI: 10.34133/bmr.0142
Hee-Gyun Kim, Bin-Na Lee, Hyun-Jeong Jeong, Hyun-Jung Kim, Jiyoung Kwon, Soram Oh, Duck-Su Kim, Kyoung-Kyu Choi, Reuben H Kim, Ji-Hyun Jang
{"title":"Effect of Bioactive Glass into Mineral Trioxide Aggregate on the Biocompatibility and Mineralization Potential of Dental Pulp Stem Cells.","authors":"Hee-Gyun Kim, Bin-Na Lee, Hyun-Jeong Jeong, Hyun-Jung Kim, Jiyoung Kwon, Soram Oh, Duck-Su Kim, Kyoung-Kyu Choi, Reuben H Kim, Ji-Hyun Jang","doi":"10.34133/bmr.0142","DOIUrl":"10.34133/bmr.0142","url":null,"abstract":"<p><p><b>Introduction:</b> Previous studies have shown that bioactive glass (BG) can enhance the formation of hydroxyapatite under simulated body fluid (SBF) conditions when combined with mineral trioxide aggregate (MTA). This study aims to assess the impact of BG-supplemented MTA on the biocompatibility and mineralization potential of dental pulp stem cells (DPSCs). <b>Methods:</b> We prepared ProRoot MTA (MTA) and MTA supplemented with 2% and 4% BG. Five passages of DPSCs were utilized for the experiments. The DPSCs were subjected to various tests to determine their morphology, viability, cell migration, and adhesion assay. Additionally, mineralization ability was assessed through SBF immersion treatment, alkaline phosphatase (ALP) activity test, Alizarin red S (ARS) staining, and real-time quantitative polymerase chain reaction (RT-qPCR) analysis. <b>Results:</b> The biocompatibility of BG-supplemented MTA was found to be comparable to that of conventional MTA, as demonstrated by the cell counting kit-8 (CCK-8) assay, cell migration, adhesion assays, and cell morphology on cement surfaces. Under SBF treatment, MTA supplemented with BG, particularly at a concentration of 4%, exhibited higher mineralization potential than conventional MTA in the ALP activity assay. This was supported by denser ARS staining, increased ALP activity, and higher expression of dentin sialophosphoprotein (DSPP), ALP, and bone morphogenetic protein-2 (BMP-2) in the SBF-treated MTABG group. <b>Conclusion:</b> Our study revealed that the biocompatibility of BG-supplemented MTA is similar to that of conventional MTA. Additionally, under SBF treatment, BG-supplemented MTA displayed enhanced mineralization potential, indicating that BG supplementation can augment the mineralization capabilities of MTA.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0142"},"PeriodicalIF":8.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803057/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143384385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomaterials researchPub Date : 2025-02-05eCollection Date: 2025-01-01DOI: 10.34133/bmr.0140
Nikola Stokovic, Natalia Ivanjko, Ana Javor, Marko Pecin, Katarina Muzina, Zeljka Magdalena Stepanic, Hrvoje Capak, Zoran Vrbanac, Drazen Maticic, Slobodan Vukicevic
{"title":"Regeneration of a Rabbit Segmental Defect with a New Bone Therapy: Autologous Blood Coagulum with Bone Morphogenetic Protein 6 and Synthetic Ceramics.","authors":"Nikola Stokovic, Natalia Ivanjko, Ana Javor, Marko Pecin, Katarina Muzina, Zeljka Magdalena Stepanic, Hrvoje Capak, Zoran Vrbanac, Drazen Maticic, Slobodan Vukicevic","doi":"10.34133/bmr.0140","DOIUrl":"10.34133/bmr.0140","url":null,"abstract":"<p><p>Segmental defects of long bones are among the most challenging and debilitating conditions in clinical medicine. Osteogrow-C is a novel osteoinductive device composed of recombinant human bone morphogenetic protein 6 (rhBMP6) delivered within autologous blood coagulum (ABC) with calcium phosphate ceramics that was proven efficacious in preclinical models of spinal fusion. This study aimed to evaluate the efficacy of Osteogrow-C in comparison to that of other osteoinductive therapies in a clinically relevant segmental defect model in rabbits. Segmental defects (15 mm) of rabbit ulna were treated with Osteogrow-C containing different synthetic ceramic particles (tricalcium phosphate [TCP] and TCP/hydroxyapatite 40%/60%), Osteogrow (rhBMP6/ABC), Infuse (rhBMP2/absorbable collagen sponge), and control implants without bone morphogenetic proteins. Defect healing was evaluated by in vivo x-ray scans 4, 8, and 17 weeks after the surgery, and animals were killed after 17 weeks for further radiographical and histological assessment. Evaluation of x-ray images, micro-computed tomography, and histological sections revealed that both Osteogrow-C formulations as well as Osteogrow and Infuse promoted healing of the ulnar segmental defect. However, radiographic scores were higher in animals treated with Osteogrow-C than those for the other used therapies. Moreover, evaluation of in vivo x-ray scans revealed that Osteogrow-C with TCP ceramics induced the most rapid defect bridging. On the other hand, control implants (ABC/TCP and ABC/biphasic calcium phosphate) promoted limited osteogenesis without defect bridging. The findings of this study suggest that Osteogrow-C is a promising safe therapeutic solution for the treatment of large bone defects, providing relief to millions of patients suffering from this debilitating condition.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0140"},"PeriodicalIF":8.1,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143257535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomaterials researchPub Date : 2025-02-05eCollection Date: 2025-01-01DOI: 10.34133/bmr.0133
Yuanyuan Liu, Haigang Wu, Gaofeng Liang
{"title":"Combined Strategies for Nanodrugs Noninvasively Overcoming the Blood-Brain Barrier and Actively Targeting Glioma Lesions.","authors":"Yuanyuan Liu, Haigang Wu, Gaofeng Liang","doi":"10.34133/bmr.0133","DOIUrl":"10.34133/bmr.0133","url":null,"abstract":"<p><p>Drugs for tumor treatment face various challenges, including poor solubility, poor stability, short blood half-life, nontargeting ability, and strong toxic side effects. Fortunately, nanodrug delivery systems provide excellent solution to these problems. However, nanodrugs for glioma treatment also face some key challenges including overcoming the blood-brain barrier (BBB) and, specifically, accumulation in glioma lesions. In this review, we systematically summarize the advantages and disadvantages of combined strategies for nanodrugs noninvasively overcoming BBB and actively targeting glioma lesions to achieve effective glioma therapy. Common noninvasive strategies for nanodrugs overcoming the BBB include bypassing the BBB via the nose-to-brain route, opening the tight junction of the BBB by focused ultrasound with microbubbles, and transendothelial cell transport by intact cell loading, ligand decoration, or cell membrane camouflage of nanodrugs. Actively targeting glioma lesions after overcoming the BBB is another key factor helping nanodrugs accurately treat in situ gliomas. This aim can also be achieved by loading nanodrugs into intact cells and modifying ligand or cell membrane fragments on the surface of nanodrugs. Targeting decorated nanodrugs can guarantee precise glioma killing and avoid side effects on normal brain tissues that contribute to the specific recognition of glioma lesions. Furthermore, the challenges and prospects of nanodrugs in clinical glioma treatment are discussed.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0133"},"PeriodicalIF":8.1,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794768/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143257438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomaterials researchPub Date : 2025-02-05eCollection Date: 2025-01-01DOI: 10.34133/bmr.0135
Georgia-Ioanna Kontogianni, Konstantinos Loukelis, Amedeo Franco Bonatti, Elisa Batoni, Carmelo De Maria, Giovanni Vozzi, Raasti Naseem, Kenneth Dalgarno, Heungsoo Shin, Chiara Vitale-Brovarone, Maria Chatzinikolaidou
{"title":"A Mechanically Stimulated Co-culture in 3-Dimensional Composite Scaffolds Promotes Osteogenic and Anti-osteoclastogenic Activity and M2 Macrophage Polarization.","authors":"Georgia-Ioanna Kontogianni, Konstantinos Loukelis, Amedeo Franco Bonatti, Elisa Batoni, Carmelo De Maria, Giovanni Vozzi, Raasti Naseem, Kenneth Dalgarno, Heungsoo Shin, Chiara Vitale-Brovarone, Maria Chatzinikolaidou","doi":"10.34133/bmr.0135","DOIUrl":"10.34133/bmr.0135","url":null,"abstract":"<p><p>Bone is subjected to a plethora of mechanical stresses, which have been found to directly influence the equilibrium between bone resorption and formation. Taking this into account, we present herein a novel biomimicking 3-dimensional model that applies cyclic uniaxial compression onto cells co-cultured on 3-dimensionally printed scaffolds consisting of poly L-lactic acid/poly(ε-caprolactone)/poly(3-hydroxybutyrate-<i>co</i>-3-hydroxyvalerate)/Sr-nanohydroxyapatite. The aim is to investigate how compression can modulate the balance between osteogenesis and osteoclastogenesis in co-culture, as well as the polarization of macrophages. One of the key aspects of the current study is the unprecedented development of a growth-factor-free co-culture, sustainable solely by the cross talk between human bone marrow mesenchymal stem cells and human peripheral blood mononuclear cells for their survival and osteogenic/osteoclastogenic differentiation capacity, respectively. Real-time polymerase chain reaction gene expression analysis of the mechanically stimulated constructs revealed up-regulation of the osteogenesis-related markers osteocalcin, osteoprotegerin, and runt-related transcription factor 2, with concurrent down-regulation of the osteoclastogenic markers dendritic-cell-specific transmembrane protein, nuclear factor of activated T cells 1, and tartrate acid phosphatase. The secretion of the receptor activator of nuclear factor kappa-Β ligand and macrophage colony-stimulating factor, as determined from enzyme-linked immunosorbent assay, was also found to depict lower levels compared to static conditions. Finally, macrophage polarization was examined via confocal imaging of tumor necrosis factor-α and interleukin-10 secretion levels, as well as through nitric oxide synthase and arginase 1 markers' gene expression, with the results indicating stronger commitment toward the M2 phenotype after mechanical stimulation.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0135"},"PeriodicalIF":8.1,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794764/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143257430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomaterials researchPub Date : 2025-02-03eCollection Date: 2025-01-01DOI: 10.34133/bmr.0139
Han Chen, Pu Yang, Ping Xue, Songjie Li, Xin Dan, Yang Li, Lanjie Lei, Xing Fan
{"title":"Food-Derived Tripeptide-Copper Self-Healing Hydrogel for Infected Wound Healing.","authors":"Han Chen, Pu Yang, Ping Xue, Songjie Li, Xin Dan, Yang Li, Lanjie Lei, Xing Fan","doi":"10.34133/bmr.0139","DOIUrl":"10.34133/bmr.0139","url":null,"abstract":"<p><p>The field of infected wound management continues to face challenges, and traditional methods used to cope with wounds include debridement, gauze coverage, medication, and others. Currently, synthetic and natural biomaterials are readily available today, enabling the creation of new wound dressings that substantially enhance wound healing. Considerable attention is being paid to hydrogels based on natural materials, which have good biocompatibility and degradability properties, while exhibiting higher similarity to natural extracellular matrix as compared to synthetic materials. In this study, we extracted the active ingredients of oxidized konjac glucomannan (OKGM) and fresh egg white (EW) from 2 foods, konjac, and egg, respectively, and formed a self-repairing hydrogel based on the cross-linking of a Schiff base. Subsequently, a natural active peptide, glycyl-l-histidyl-l-lysine-Cu (GHK-Cu), was loaded, and an all-natural composite hydrogel dressing, EW/OKGM@GHK-Cu (GEK), was developed. The GEK hydrogel, exhibiting both antibacterial and anti-inflammatory properties, plays a hemostatic role by adhering to tissues and promoting neovascularization and serves as an optimal dressing for skin regeneration. Taken together, GEK hydrogel dressings derived from natural food sources therefore constitute an efficient and cost-effective strategy for managing infected wound healing and have significant potential for clinical application and transformation.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0139"},"PeriodicalIF":8.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788471/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143124220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomaterials researchPub Date : 2025-01-31eCollection Date: 2025-01-01DOI: 10.34133/bmr.0136
Jiwon An, Moonhwan Choi, Sol Kim, Hyungkyung Yoon, An-Soo Jang, Sang-Kyung Lee, Taiyoun Rhim
{"title":"Isoprenaline-Modified Polyethyleneimine as an Efficient Gene Delivery System for Targeted Asthma Therapy and Airway Remodeling Inhibition.","authors":"Jiwon An, Moonhwan Choi, Sol Kim, Hyungkyung Yoon, An-Soo Jang, Sang-Kyung Lee, Taiyoun Rhim","doi":"10.34133/bmr.0136","DOIUrl":"10.34133/bmr.0136","url":null,"abstract":"<p><p>This study introduces a novel gene delivery system, polyethyleneimine modified with isoprenaline (PEI-isoprenaline), to enhance targeted gene delivery in the context of asthma therapy and airway remodeling. In vitro investigations used Beas2B cells to assess the biocompatibility of isoprenaline, PEI-isoprenaline, and small interfering RNA (siRNA)/PEI-isoprenaline complexes, with cytotoxicity evaluations confirming their safety. The transfection efficiency of the siRNA/PEI-isoprenaline complex was scrutinized in THP-1 cells and displayed superior performance in delivering siRNA to cells expressing the β2 adrenergic receptor (ADRB2). In vivo studies used a murine chronic asthma model to evaluate gene delivery to ADRB2-expressing cells in bronchoalveolar fluid and lung tissues. Therapeutic effects were comprehensively assessed through cell analyses, revealing substantial reductions in airway inflammatory cells and fibrosis, particularly in the Arg1 siRNA/PEI-isoprenaline group. The siRNA/PEI-isoprenaline complex exhibited an impressive 80% delivery rate, greatly surpassing the performance of polyethyleneimine 2K (20%). Notably, the complex achieved a substantial 63% reduction in arginase-1 gene expression, validating its therapeutic potential. Noteworthy inhibitory effects on airway hyperresponsiveness were observed, underscoring the complex's potential as a targeted gene delivery system for asthma treatment. Our findings underscore the promise and effectiveness of the PEI-isoprenaline complex as a gene delivery system, with its demonstrated biocompatibility, transfection efficiency, and therapeutic outcomes, including arginase-1 gene knockdown and mitigation of airway inflammation and fibrosis, indicating it as a promising candidate for advancing asthma therapy and contributing to the understanding and control of airway remodeling in respiratory diseases.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0136"},"PeriodicalIF":8.1,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782793/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143082560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomaterials researchPub Date : 2025-01-29eCollection Date: 2025-01-01DOI: 10.34133/bmr.0114
Yongquan Huang, Songying Pi, Hui Chen, Shushan Zhang, Jianzhong Xian, Yuhong Lin, Jiaxing Chen, Qing Ye, Feile Ye, Yin Huang, Hailing Yu, Zhongzhen Su
{"title":"Ultrasonic-Controlled Drug Release Prevents Protumorigenic Transition and Improves Sequential Targeting Effect to Enhance Treatment of Residual Hepatocellular Carcinoma.","authors":"Yongquan Huang, Songying Pi, Hui Chen, Shushan Zhang, Jianzhong Xian, Yuhong Lin, Jiaxing Chen, Qing Ye, Feile Ye, Yin Huang, Hailing Yu, Zhongzhen Su","doi":"10.34133/bmr.0114","DOIUrl":"https://doi.org/10.34133/bmr.0114","url":null,"abstract":"<p><p>Insufficient radio-frequency ablation (IRFA) of hepatocellular carcinoma accelerates the recurrence of residual tumor, leading to a poor prognosis. Neutrophils (NEs), as the initial leukocytes to infiltrate the IRFA-associated inflammatory area, were utilized as drug carriers due to their inherent chemotactic properties for targeted delivery of chemotherapy drugs to the inflammatory site where residual tumor persists post-IRFA. Previous research has highlighted that the immunosuppressive cytokines in the tumor microenvironment could promote the transition of NEs into a protumorigenic phenotype. However, it is unclear whether NEs used as drug delivery carriers undergo similar changes and how this transition affects treatment effectiveness. Here, we present novel findings demonstrating the phenotypic transition of NEs in the residual tumor microenvironment from an antitumorigenic to a protumorigenic state following IRFA treatment. More critically, we found for the first time that NE carriers undergo a comparable phenotypic transition in the residual tumor, thereby attenuating the therapeutic outcome. Ingeniously, coloading NE carriers with perfluorohexane not only enabled ultrasound imaging but also facilitated spatiotemporally controllable drug release through ultrasound irradiation, thus preventing the protumorigenic transition of NE carriers and maintaining an inflammatory microenvironment at the residual tumor zone. This significantly improved the sequential targeting effect of NE carriers and ultimately enhanced the treatment of residual tumor post-IRFA. Our study provided novel insights into the modulatory role of the immune microenvironment on the phenotypic transition of live NE carriers in the drug delivery system and presented a strategy to prevent adverse effects and enhance residual tumor treatment.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0114"},"PeriodicalIF":8.1,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gingival Soft Tissue Integrative Zirconia Abutments with High Fracture Toughness and Low-Temperature Degradation Resistance.","authors":"Qiulan Li, Mianfeng Yao, Yunxu Yang, Bixiao Lin, Hongio Chen, Huixia Luo, Chao Zhang, Yanhao Huang, Yutao Jian, Ke Zhao, Xiaodong Wang","doi":"10.34133/bmr.0137","DOIUrl":"10.34133/bmr.0137","url":null,"abstract":"<p><p>Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the \"surface\" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the \"inner\" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials. In this study, we aim to develop a zirconia composite abutment with high \"inner\" structure stability and \"surface\" bioactivities simultaneously and to explore the mechanism of performance improvement. Therefore, elongated SrAl<sub>12</sub>O<sub>19</sub> and equiaxed Al<sub>2</sub>O<sub>3</sub> were introduced into the zirconia matrix by using the Pechini method. Reinforcements of different shapes can promote the density, reduce the grain size, and increase the phase stability of composite ceramics, which improves the fracture toughness and LTD susceptibility. In addition, the released strontium ions (Sr<sup>2+</sup>), without sacrificing the mechanical properties of the material, could activate the biological capacity of the zirconia surface by activating the M2 polarization of macrophages through the Sr<sup>2+</sup>/calcium-sensing receptor/SH3 domain-binding protein 5 axis, thereby promoting the collagen matrix synthesis of fibroblasts and the angiogenesis of vascular endothelial cells. This successful case proposes a novel strategy for the development of advanced high-strength and bioactive all-ceramic materials by introducing reinforcements containing biofunctional elements into the ceramic matrix. The approach paves the way for the widespread application of such all-ceramic materials in soft-tissue-related areas.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0137"},"PeriodicalIF":8.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756602/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}