External-Force-Offset Effects of ECM Coating Layers on hMSCs Subjected to External Physical Force.

IF 9.6 Q1 ENGINEERING, BIOMEDICAL
Biomaterials research Pub Date : 2025-10-03 eCollection Date: 2025-01-01 DOI:10.34133/bmr.0265
Cho Young Park, Kyoung Choi, Young-Jin Kim, Seok Chung, Jun Shik Choi, Sang Jun Park, Chun-Ho Kim
{"title":"External-Force-Offset Effects of ECM Coating Layers on hMSCs Subjected to External Physical Force.","authors":"Cho Young Park, Kyoung Choi, Young-Jin Kim, Seok Chung, Jun Shik Choi, Sang Jun Park, Chun-Ho Kim","doi":"10.34133/bmr.0265","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) used for cell-delivery-based therapy also undergo considerable external stresses upon entering the recipient site in the body. Here, we sought to develop a cell-protective barrier on the MSC surface that protects against stress-induced damage from physical external stresses. The barrier was fabricated from gelatin and hyaluronic acid (HyA) using a layer-by-layer (LbL) technique. In addition to assessing the stability and biological properties of extracellular matrix (ECM)-coated human bone marrow-derived MSCs (hMSCs) produced using the LbL, we also evaluated the cell-protective effects of this coating against 2 external stresses: low-attachment conditions and mechanical force induced by injection. Cell biological and morphological surface changes accompanying cell surface coating were analyzed using fluorescence-activated cell sorting and scanning electron microscopy. Viability and cell cycle characteristics were not substantially different between bare hMSCs and ECM-coated hMSCs with different numbers of layers after 7 days in culture. Stemness was also maintained, as reflected in >97.3% expression of positive markers and <0.5% expression of negative markers in 6-layered ECM-coated hMSCs, termed ECM-hMSCs. ECM-hMSCs showed 62.1% decrease in cell damage and 50.6% increase in DNA content after 3 days under low-attachment conditions. In addition, ECM-hMSCs injected at 100 and 200 kPa showed 27.2% and 41.8% higher viability, with damaged cells decreased by 54.9% and 45.6%, respectively, compared to bare hMSCs. These results show that LbL coating of hMSCs with gelatin and HyA does not impair the function of hMSCs and can physically protect cells from low-attachment conditions and the mechanical force associated with injection.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0265"},"PeriodicalIF":9.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12491781/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mesenchymal stem cells (MSCs) used for cell-delivery-based therapy also undergo considerable external stresses upon entering the recipient site in the body. Here, we sought to develop a cell-protective barrier on the MSC surface that protects against stress-induced damage from physical external stresses. The barrier was fabricated from gelatin and hyaluronic acid (HyA) using a layer-by-layer (LbL) technique. In addition to assessing the stability and biological properties of extracellular matrix (ECM)-coated human bone marrow-derived MSCs (hMSCs) produced using the LbL, we also evaluated the cell-protective effects of this coating against 2 external stresses: low-attachment conditions and mechanical force induced by injection. Cell biological and morphological surface changes accompanying cell surface coating were analyzed using fluorescence-activated cell sorting and scanning electron microscopy. Viability and cell cycle characteristics were not substantially different between bare hMSCs and ECM-coated hMSCs with different numbers of layers after 7 days in culture. Stemness was also maintained, as reflected in >97.3% expression of positive markers and <0.5% expression of negative markers in 6-layered ECM-coated hMSCs, termed ECM-hMSCs. ECM-hMSCs showed 62.1% decrease in cell damage and 50.6% increase in DNA content after 3 days under low-attachment conditions. In addition, ECM-hMSCs injected at 100 and 200 kPa showed 27.2% and 41.8% higher viability, with damaged cells decreased by 54.9% and 45.6%, respectively, compared to bare hMSCs. These results show that LbL coating of hMSCs with gelatin and HyA does not impair the function of hMSCs and can physically protect cells from low-attachment conditions and the mechanical force associated with injection.

外力作用下ECM涂层对hMSCs的外力偏移效应。
用于细胞递送治疗的间充质干细胞(MSCs)在进入体内受体部位时也会受到相当大的外部压力。在这里,我们试图在MSC表面开发一种细胞保护屏障,以防止物理外部压力引起的应力诱导损伤。该屏障由明胶和透明质酸(HyA)采用逐层(LbL)技术制备。除了评估使用LbL制备的细胞外基质(ECM)包膜人骨髓源间充质干细胞(hMSCs)的稳定性和生物学特性外,我们还评估了这种包膜对2种外部应力(低附着条件和注射诱导的机械力)的细胞保护作用。采用荧光活化细胞分选技术和扫描电镜技术,分析了细胞表面涂层对细胞生物学和形态学表面的影响。培养7天后,不同层数ecm包被的hMSCs和裸层hMSCs的活力和细胞周期特性无显著差异。阳性标记物的表达率为97.3%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信