IEEE open journal of circuits and systems最新文献

筛选
英文 中文
Imitation System of Humanoid Robots and Its Applications 仿人机器人仿真系统及其应用
IEEE open journal of circuits and systems Pub Date : 2023-01-01 DOI: 10.1109/OJCAS.2022.3231097
Ze-Feng Zhan;Han-Pang Huang
{"title":"Imitation System of Humanoid Robots and Its Applications","authors":"Ze-Feng Zhan;Han-Pang Huang","doi":"10.1109/OJCAS.2022.3231097","DOIUrl":"https://doi.org/10.1109/OJCAS.2022.3231097","url":null,"abstract":"In this paper, we propose an imitation system that imitates human motions in videos to plan robot actions that are similar to human motions, with the aim of the complicated whole-body action planning of humanoid robots. Additionally, we created an interaction system that will enable basic human-robot interaction for our humanoid robot. To obtain the 3D coordinates of the key points on the human body, we used the 3D pose estimation model. The key points were then transformed into various trajectory files needed by the robot to complete the motion, using the mapping method proposed in this research, which refers to the control strategy and stability of the robot. In addition, we proposed some post-processing methods to post-process the trajectories. In the interaction system, we created a speech and vision system so that the robot could detect human gestures or postures and converse with people. It also has a music rhythm recognition system developed by seniors that enables the robot to dance to the beats of the song. Finally, through this system, we completed several human-robot interaction scenarios, which proved the convenience, and effectiveness of motion planning with an imitation system, and the completeness of the interaction system.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"4 ","pages":"15-24"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/10019301/09996134.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49910010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
IEEE Circuits and Systems Society 电气和电子工程师学会电路与系统协会
IEEE open journal of circuits and systems Pub Date : 2023-01-01 DOI: 10.1109/OJCAS.2023.3348969
{"title":"IEEE Circuits and Systems Society","authors":"","doi":"10.1109/OJCAS.2023.3348969","DOIUrl":"https://doi.org/10.1109/OJCAS.2023.3348969","url":null,"abstract":"","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"4 ","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10388067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139419514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on AC/DC Power Converter Based on Magnetic Coupling Resonance 基于磁耦合共振的交/直流功率变换器研究
IEEE open journal of circuits and systems Pub Date : 2023-01-01 DOI: 10.12677/ojcs.2023.121001
吉飞 杜
{"title":"Study on AC/DC Power Converter Based on Magnetic Coupling Resonance","authors":"吉飞 杜","doi":"10.12677/ojcs.2023.121001","DOIUrl":"https://doi.org/10.12677/ojcs.2023.121001","url":null,"abstract":"The wireless charging module designed in this paper uses the principle of magnetic coupling resonant wireless charging, uses DC power supply mode to convert into the required alternating current through the inverter circuit, generates high-frequency sinusoidal oscillation current to drive the transmitting coil, makes the transmitting circuit in a resonant state, transmits energy to","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84939123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 672-nW, 670-nVrms ECG Acquisition AFE With Noise-Tolerant Heartbeat Detector 一个672-nW, 670-nVrms的心电采集AFE与容噪心跳检测器
IEEE open journal of circuits and systems Pub Date : 2023-01-01 DOI: 10.1109/OJCAS.2023.3237839
Yanhan Zeng;Zhixian Li;Weijian Chen;Wei Zhou;Yuchen Bao;Yongsen Chen;Yongfu Li
{"title":"A 672-nW, 670-nVrms ECG Acquisition AFE With Noise-Tolerant Heartbeat Detector","authors":"Yanhan Zeng;Zhixian Li;Weijian Chen;Wei Zhou;Yuchen Bao;Yongsen Chen;Yongfu Li","doi":"10.1109/OJCAS.2023.3237839","DOIUrl":"https://doi.org/10.1109/OJCAS.2023.3237839","url":null,"abstract":"This paper presents an electrocardiogram acquisition analog front-end (AFE) with a noise tolerant heartbeat (HB) detector. Source degradation and transconductance bootstrap techniques are incorporated into the AFE to reduce the 1/f noise of the amplifier. Furthermore, the chopper modulation, DC-servo loop (DSL) and pre-charge technology are combined to reduce interference from the environment. A mixed-signal implementation of HB detector with the symmetric-comparison loop is proposed to reduce the power consumption and area, which also suppresses motion artifact interference by adaptive thresholds. Implemented in <inline-formula> <tex-math notation=\"LaTeX\">$0.18 ~mu text{m}$ </tex-math></inline-formula> CMOS process, the circuit only occupies an area of <inline-formula> <tex-math notation=\"LaTeX\">$0.122 mm^{2}$ </tex-math></inline-formula> and consumes <inline-formula> <tex-math notation=\"LaTeX\">$0.62 ~mu text{W}$ </tex-math></inline-formula> at a 1.2-V supply, of which AFE and HB detector consume 507 nW and 110 nW, respectively. Simulation results show that the gain and the CMRR of AFE range from 30–45 dB and 65–105 dB, respectively. The input-referred noise is 670 nVrms with a mid-band gain of 42 dB and a bandwidth ranging from 0.5 Hz to 1 kHz.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"4 ","pages":"25-35"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/10019301/10020171.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49909915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Inductorless Optical Receiver Front-End Employing a High Gain-BW Product Differential Transimpedance Amplifier in 16-nm FinFET Process 采用高增益- bw积差跨阻放大器的16纳米FinFET工艺无电感光接收机前端
IEEE open journal of circuits and systems Pub Date : 2023-01-01 DOI: 10.1109/OJCAS.2023.3236567
Milad Haghi Kashani;Hossein Shakiba;Ali Sheikholeslami
{"title":"An Inductorless Optical Receiver Front-End Employing a High Gain-BW Product Differential Transimpedance Amplifier in 16-nm FinFET Process","authors":"Milad Haghi Kashani;Hossein Shakiba;Ali Sheikholeslami","doi":"10.1109/OJCAS.2023.3236567","DOIUrl":"https://doi.org/10.1109/OJCAS.2023.3236567","url":null,"abstract":"In this paper, a fully-differential transimpedance amplifier (TIA) providing a high gain-BW product (GBP) is introduced. In the proposed architecture, a cascode cross-coupled structure is employed to double the effective transconductance of the cascode devices, improving the BW of the TIA. Moreover, a differential architecture is implemented using an RC high-pass filter along with a buffer stage requiring smaller capacitance and resistance. Furthermore, a single-ended negative capacitance generation (NCG) circuit is employed at the input of the TIA to partially compensate for the input parasitic capacitances. A TIA including the proposed techniques, designed and laid out in a 16-nm FinFET process, demonstrates 57% and 79% better figure-of-merit compared to cascode and conventional TIAs designed along with the proposed TIA for a fair comparison, respectively. Post-layout simulations in companion with statistical analysis are employed to verify the effectiveness of the proposed architecture. From simulation results, the optical receiver achieves a peak transimpedance gain of 58.5 dB $Omega $ , a BW of 14.8 GHz, an input-referred noise of 33.6 pA/ $surd $ Hz, and an eye-opening of 30 mV at a data-rate of 56 Gbps PAM4 and at a bit-error-rate (BER) of 1E-6. The whole circuit consumes 49 mW and occupies an active area of 0.0076 mm 2.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"4 ","pages":"36-49"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/10019301/10015890.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49909916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PG-CAS: Pro-Active EM-SCA Probe Detection Using Switched-Capacitor-Based Patterned-Ground Co-Planar Capacitive Asymmetry Sensing PG-CAS:基于开关电容的模式地共面电容不对称传感的主动EM-SCA探针检测
IEEE open journal of circuits and systems Pub Date : 2023-01-01 DOI: 10.1109/OJCAS.2023.3292712
Dong-Hyun Seo;Archisman Ghosh;Debayan Das;Mayukh Nath;Santosh Ghosh;Shreyas Sen
{"title":"PG-CAS: Pro-Active EM-SCA Probe Detection Using Switched-Capacitor-Based Patterned-Ground Co-Planar Capacitive Asymmetry Sensing","authors":"Dong-Hyun Seo;Archisman Ghosh;Debayan Das;Mayukh Nath;Santosh Ghosh;Shreyas Sen","doi":"10.1109/OJCAS.2023.3292712","DOIUrl":"https://doi.org/10.1109/OJCAS.2023.3292712","url":null,"abstract":"This paper presents the design and analysis of a pro-active strategy to detect the presence of an electromagnetic (EM) side-channel analysis (SCA) attack, using Patterned-Ground co-planar Capacitive Asymmetry Sensing (PG-CAS) system. The PG-CAS system senses the asymmetry created in the plate-ground capacitance and turns on a SCA countermeasure in presence of an EM probe. The proposed PG-CAS system for approaching probe consists of the EM SCA detection sensor plate and circuits. The EM SCA detection sensor is implemented as a grid of four metal plates of the same dimensions using the top metal layer along with a patterned-ground plane at the immediate lower metal layer. The EM SCA detection system consists of a proximity to capacitance conversion circuit, digital synchronization logic circuit to detect and alarm the IC, and an EM SCA countermeasure. When an attack is detected, the countermeasure is turned on based on the deviation of the symmetry of the plate-ground capacitance pairs. The PG-CAS system-level post-layout simulation results using TSMC 65nm technology and Ansys Maxwell show a $>5times $ improvement in the detection range and a $sim 29times $ improvement in power consumption over existing inductive sensing methods for attack detection.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"4 ","pages":"271-282"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/10019301/10192257.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49910006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a Non-Contact Human Sign Monitoring System Based on Microwave Sensors 基于微波传感器的非接触式人体手势监测系统设计
IEEE open journal of circuits and systems Pub Date : 2023-01-01 DOI: 10.12677/ojcs.2023.122003
雨泽 李
{"title":"Design of a Non-Contact Human Sign Monitoring System Based on Microwave Sensors","authors":"雨泽 李","doi":"10.12677/ojcs.2023.122003","DOIUrl":"https://doi.org/10.12677/ojcs.2023.122003","url":null,"abstract":"In this paper","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87755717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2023 Index IEEE Open Journal of Circuits and Systems Vol. 4 2023 Index IEEE Open Journal of Circuits and Systems Vol.
IEEE open journal of circuits and systems Pub Date : 2023-01-01 DOI: 10.1109/OJCAS.2024.3356108
{"title":"2023 Index IEEE Open Journal of Circuits and Systems Vol. 4","authors":"","doi":"10.1109/OJCAS.2024.3356108","DOIUrl":"https://doi.org/10.1109/OJCAS.2024.3356108","url":null,"abstract":"","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"4 ","pages":"363-369"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10410125","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139504507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on Model Parameter Identification of Lithium Ion Battery 锂离子电池模型参数辨识研究
IEEE open journal of circuits and systems Pub Date : 2023-01-01 DOI: 10.12677/ojcs.2023.122002
启煌 朱
{"title":"Research on Model Parameter Identification of Lithium Ion Battery","authors":"启煌 朱","doi":"10.12677/ojcs.2023.122002","DOIUrl":"https://doi.org/10.12677/ojcs.2023.122002","url":null,"abstract":"Due to the change in automobile working conditions, the structure coefficient of automobile power battery pack also appears to nonlinear change. In order to realize efficient control of such nonlinear battery components, this paper chooses the second-order RC model as the equivalent circuit model of the battery, and uses the constant current charge-discharge test of the battery, the calibra-朱启煌","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81867409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of PVT Variation and Threshold Selection on OBT and OBIST Fault Detection in RFCMOS Amplifiers PVT变化和阈值选择对RFCMOS放大器OBT和OBIST故障检测的影响
IEEE open journal of circuits and systems Pub Date : 2023-01-01 DOI: 10.1109/OJCAS.2022.3232638
Hendrik P. Nel;Fortunato Carlos Dualibe;Tinus Stander
{"title":"Influence of PVT Variation and Threshold Selection on OBT and OBIST Fault Detection in RFCMOS Amplifiers","authors":"Hendrik P. Nel;Fortunato Carlos Dualibe;Tinus Stander","doi":"10.1109/OJCAS.2022.3232638","DOIUrl":"https://doi.org/10.1109/OJCAS.2022.3232638","url":null,"abstract":"Oscillation-based testing (OBT) and Oscillation-based built-in self-testing (OBIST) circuits enable detection of catastrophic faults in analogue and RF circuits, but both are sensitive to process, voltage and temperature (PVT) variation. This paper investigates 15 OBT and OBIST feature extraction strategies, and four approaches to threshold selection, by calculating figure-of-merit (FOM) across PVT variation. This is done using a 2.4 GHz LNA in <inline-formula> <tex-math notation=\"LaTeX\">$0.35 mu mathrm{m}$ </tex-math></inline-formula> CMOS as DUT. Of the 15 feature extraction approaches, the OBT approaches are found more effective, with some benefit gained from switched-state detection. Of the four approaches to threshold selection (nominal-ranged static thresholds, extreme-range static thresholds, temperature dynamic thresholds, and simple noise-filtered tone detection), dynamic thresholds resulted in the highest average FoM of 0.919, with the best FoM of 0.952, with a corresponding probability of test escape <inline-formula> <tex-math notation=\"LaTeX\">$Pleft(T_Eright)$ </tex-math></inline-formula> and yield loss <inline-formula> <tex-math notation=\"LaTeX\">$Pleft(Y_Lright)$ </tex-math></inline-formula> of <inline-formula> <tex-math notation=\"LaTeX\">$5 cdot 10^{-2}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation=\"LaTeX\">$1.89 cdot 10^{-2}$ </tex-math></inline-formula> respectively but requires accurate temperature measurement. Extreme static threshold selection resulted in a comparable average FoM of 0.912, but with less susceptibility to process variation and without the need for temperature measurement. Binary detection of a noise-filtered oscillating tone is found the least complex approach, with an average FoM of 0.891.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"4 ","pages":"70-84"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/10019301/10002329.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49909917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信