类 GC LDPC 码构建及其 NN 辅助解码器实现

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yu-Lun Hsu;Li-Wei Liu;Yen-Chin Liao;Hsie-Chia Chang
{"title":"类 GC LDPC 码构建及其 NN 辅助解码器实现","authors":"Yu-Lun Hsu;Li-Wei Liu;Yen-Chin Liao;Hsie-Chia Chang","doi":"10.1109/OJCAS.2024.3363043","DOIUrl":null,"url":null,"abstract":"The trade-off between decoding performance and hardware costs has been a long-standing challenge in Low-Density Parity Check (LDPC) decoding. Based on model-driven methodology, the Neural Network-Aided Variable Weight Min-Sum (NN-aided vwMS) algorithm is proposed to address this dilemma in this paper. Not only eliminating the second minimum value in the check node update process for reducing hardware complexity, our approach featuring a fast-convergent shuffled scheduling method proposed to enhance convergence speed can also maintain similar decoding performance as compared to the traditional normalized min-sum algorithm. Different from existing model-driven methodologies only suitable for short codes, a Globally-Coupled Like (GC-like) LDPC code construction is presented to enable efficient training with simplified neural networks for longer LDPC codes. To demonstrate the capability of the NN-aided vwMS algorithm with the fast-convergent shuffled scheduling method, a GC-like (9126,8197) LDPC decoder is implemented for NAND flash applications, achieving a 6.56 Gbps throughput with a core area of \n<inline-formula> <tex-math>$0.58~mm^{2}$ </tex-math></inline-formula>\n under the 40-nm CMOS TSMC process, and average power consumption of 288 mW under the frame error rate of \n<inline-formula> <tex-math>$2.64 \\times 10^{-5}$ </tex-math></inline-formula>\n at 4.5dB. Our decoder architecture achieves a superior normalized throughput-to-area ratio of \n<inline-formula> <tex-math>$11.31~Gbps/mm^{2}$ </tex-math></inline-formula>\n, demonstrating a 2.4x improvement among previous works.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10423290","citationCount":"0","resultStr":"{\"title\":\"GC-Like LDPC Code Construction and its NN-Aided Decoder Implementation\",\"authors\":\"Yu-Lun Hsu;Li-Wei Liu;Yen-Chin Liao;Hsie-Chia Chang\",\"doi\":\"10.1109/OJCAS.2024.3363043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trade-off between decoding performance and hardware costs has been a long-standing challenge in Low-Density Parity Check (LDPC) decoding. Based on model-driven methodology, the Neural Network-Aided Variable Weight Min-Sum (NN-aided vwMS) algorithm is proposed to address this dilemma in this paper. Not only eliminating the second minimum value in the check node update process for reducing hardware complexity, our approach featuring a fast-convergent shuffled scheduling method proposed to enhance convergence speed can also maintain similar decoding performance as compared to the traditional normalized min-sum algorithm. Different from existing model-driven methodologies only suitable for short codes, a Globally-Coupled Like (GC-like) LDPC code construction is presented to enable efficient training with simplified neural networks for longer LDPC codes. To demonstrate the capability of the NN-aided vwMS algorithm with the fast-convergent shuffled scheduling method, a GC-like (9126,8197) LDPC decoder is implemented for NAND flash applications, achieving a 6.56 Gbps throughput with a core area of \\n<inline-formula> <tex-math>$0.58~mm^{2}$ </tex-math></inline-formula>\\n under the 40-nm CMOS TSMC process, and average power consumption of 288 mW under the frame error rate of \\n<inline-formula> <tex-math>$2.64 \\\\times 10^{-5}$ </tex-math></inline-formula>\\n at 4.5dB. Our decoder architecture achieves a superior normalized throughput-to-area ratio of \\n<inline-formula> <tex-math>$11.31~Gbps/mm^{2}$ </tex-math></inline-formula>\\n, demonstrating a 2.4x improvement among previous works.\",\"PeriodicalId\":93442,\"journal\":{\"name\":\"IEEE open journal of circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10423290\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10423290/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10423290/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在低密度奇偶校验(LDPC)解码中,解码性能与硬件成本之间的权衡一直是一个长期存在的难题。本文基于模型驱动方法,提出了神经网络辅助可变权重最小和算法(NN-aided vwMS)来解决这一难题。我们的方法不仅消除了校验节点更新过程中的第二个最小值以降低硬件复杂度,而且采用了一种快速收敛的洗牌调度方法以提高收敛速度,与传统的归一化最小和算法相比,还能保持类似的解码性能。与只适用于短码的现有模型驱动方法不同,本文提出了一种类似于全球耦合(GC-like)的 LDPC 码结构,以便使用简化的神经网络对较长的 LDPC 码进行高效训练。为了证明神经网络辅助 vwMS 算法与快速收敛洗牌调度方法的能力,我们为 NAND 闪存应用实现了一个类 GC(9126,8197)LDPC 解码器,在 40 纳米 CMOS TSMC 工艺下实现了 6.56 Gbps 的吞吐量,核心面积为 0.58~mm^{2}$ ,在 4.5dB 的帧误差率为 2.64 \times 10^{-5}$ 时,平均功耗为 288 mW。我们的解码器架构实现了11.31~Gbps/mm^{2}$的优异归一化吞吐量-面积比,与之前的研究相比提高了2.4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GC-Like LDPC Code Construction and its NN-Aided Decoder Implementation
The trade-off between decoding performance and hardware costs has been a long-standing challenge in Low-Density Parity Check (LDPC) decoding. Based on model-driven methodology, the Neural Network-Aided Variable Weight Min-Sum (NN-aided vwMS) algorithm is proposed to address this dilemma in this paper. Not only eliminating the second minimum value in the check node update process for reducing hardware complexity, our approach featuring a fast-convergent shuffled scheduling method proposed to enhance convergence speed can also maintain similar decoding performance as compared to the traditional normalized min-sum algorithm. Different from existing model-driven methodologies only suitable for short codes, a Globally-Coupled Like (GC-like) LDPC code construction is presented to enable efficient training with simplified neural networks for longer LDPC codes. To demonstrate the capability of the NN-aided vwMS algorithm with the fast-convergent shuffled scheduling method, a GC-like (9126,8197) LDPC decoder is implemented for NAND flash applications, achieving a 6.56 Gbps throughput with a core area of $0.58~mm^{2}$ under the 40-nm CMOS TSMC process, and average power consumption of 288 mW under the frame error rate of $2.64 \times 10^{-5}$ at 4.5dB. Our decoder architecture achieves a superior normalized throughput-to-area ratio of $11.31~Gbps/mm^{2}$ , demonstrating a 2.4x improvement among previous works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信