David H. Gultekin;John T. Vaughan;Devashish Shrivastava
{"title":"Experimental Evaluation of Relationship Between Radiofrequency Heating Near Implanted Conductive Devices, Scanner-Reported B1+rms, and Transmit Power","authors":"David H. Gultekin;John T. Vaughan;Devashish Shrivastava","doi":"10.1109/JMW.2025.3550087","DOIUrl":"https://doi.org/10.1109/JMW.2025.3550087","url":null,"abstract":"Time-varying radiofrequency (RF) fields necessary to perform magnetic resonance imaging (MRI) may induce excessive heating near implanted conductive medical devices during MRI. The time and space-averaged root-mean-square effective magnetic field (B<sub>1+rms</sub>) and specific absorption rate (SAR) have been proposed as metrics to control the RF-induced heating and avoid unintended thermal injury. We experimentally evaluate the relationship between the RF-induced heating near an implanted conductive medical device, scanner-reported B<sub>1+rms</sub>, and RF power. RF heating was measured near the electrodes of a commercial deep brain stimulation (DBS) lead placed in a tissue-equivalent gel phantom using fluoroptic temperature probes in a commercial 3T scanner during MRI. Four RF transmit/receive coil combinations were used: a circularly polarized head transmit/receive coil, a 20-channel head/neck, a 32-channel head, or a 64-channel head/neck receive-only coil with a whole-body transmit coil. RF heating was induced by a 2D GRE sequence using two RF pulse types (fast and normal), three flip angles (30°, 60°, and 90°), and turning the receive-only coils off/on. The scanner-reported B<sub>1+rms</sub> and RF power were recorded. Measurements show that temperature change correlates linearly with both RF power and square of B<sub>1+rms</sub> for each coil and combination. However, the variation in heating for various RF coils and combinations was much larger for B<sub>1+rms</sub> compared to RF power. Additional studies across other MR scanners are needed to better understand the extent of variation in RF-induced heating near implanted conductive devices as a function of scanner-reported B<sub>1+rms</sub> and RF power to develop conservative and reliable patient labeling.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 3","pages":"518-525"},"PeriodicalIF":6.9,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10963882","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Fully Integrated 0.48 THz FMCW Radar Sensor in a SiGe Technology","authors":"Florian Vogelsang;Jonathan Bott;David Starke;Marc Hamme;Benedikt Sievert;Holger Rücker;Nils Pohl","doi":"10.1109/JMW.2025.3553681","DOIUrl":"https://doi.org/10.1109/JMW.2025.3553681","url":null,"abstract":"The THz gap has been a significant research objective for photonics and electronics for decades. This work introduces a fully integrated frequency modulated continuous wave (FMCW) radar sensor with a center frequency of 0.48 THz, realized in a silicon-germanium (SiGe) technology. The sensor consists of a THz MMIC integrated onto a front-end printed circuit board (PCB) with FR4 substrate used for frequency synthesis and IF signal amplification. A dielectric polytetrafluoroethylene (PTFE) lens is mounted above the MMIC to act as transmitter (Tx) and receiver (Rx) lens as well as a physical protection for the bond wires of the MMIC. A back-end PCB generates the supply voltages and control signals, and its analog-digital-converter (ADC) samples the IF signal. The whole sensor is just 4.9 cm by 4.3 cm in size and is cost-efficient due to its design with FR4 PCBs. The MMIC reaches an output power of up to <inline-formula><tex-math>$-9$</tex-math></inline-formula> dBm. In FMCW operation with the full sensor, a tuning range of 49 GHz is reached along an equivalent isotropic radiated power (EIRP) of up to 22 dBm. Distance measurements were successfully tested for distances of up to 5 m, and a radiation pattern is presented. In summary, this article demonstrates the potential of SiGe technology in the THz range for applications like localization, material characterization, and communication.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 3","pages":"572-582"},"PeriodicalIF":6.9,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10959113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuewen Zhou;Fangzheng Zhang;Jiayuan Kong;Yihan Wang;Jinhu Li;Kunyang Chen;Guanqun Sun;Yuhui He;Shilong Pan
{"title":"Field Trial of Cluster Target Detection by Broadband Microwave Photonic MIMO Radar","authors":"Yuewen Zhou;Fangzheng Zhang;Jiayuan Kong;Yihan Wang;Jinhu Li;Kunyang Chen;Guanqun Sun;Yuhui He;Shilong Pan","doi":"10.1109/JMW.2025.3553507","DOIUrl":"https://doi.org/10.1109/JMW.2025.3553507","url":null,"abstract":"Cluster target detection is challenging for traditional narrow-band radars. Microwave photonic multiple-input-multiple-output (MIMO) radar is an emerging technique for accurate cluster target detection, which enhances range and angular resolution via its large bandwidth and virtual aperture. Previous research on microwave photonic MIMO radars focuses on the effectiveness of photonics-based hardware, while its advantages for practical applications have not been effectively validated. This paper demonstrates a field trial of cluster target detection by a broadband microwave photonic MIMO radar having an 8×8 MIMO array and a bandwidth of 8 GHz per channel. Using a broadband digital beamforming algorithm that compensates for aperture fill time, precise target detection is achieved without beam squint and broadening problems. Meanwhile, grating lobes due to sparse array are well suppressed, which enables the improvement of angular resolution by using large-aperture sparse array. In the experiment, detections of a single drone and three densely distributed drones as a cluster are implemented respectively. By comparing the results of 50-MHz narrowband MIMO detection and 8-GHz full-band MIMO detection, the advantage of broadband microwave photonic MIMO radar is verified. For single drone detection, the range resolution and angular resolution are estimated to be 2.1 cm and 0.17°, respectively, and the grating lobes are well suppressed with peak-to-maximum grating-lobe ratio over 13.5 dB. When detecting three drones as a cluster, the individuals are precisely distinguished and located. The results validate that the microwave photonic MIMO radar has high-resolution detection capability superior to traditional narrow-band radars, and it provides an effective and practical solution for cluster target detection.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 3","pages":"631-639"},"PeriodicalIF":6.9,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10949595","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shengjia Wu;Jiro Hirokawa;Takashi Tomura;Nelson J. G. Fonseca
{"title":"Optimal Adjacent Output Phase Difference Assignments in Generalized One-Dimensional Five-Beam Switching Matrices","authors":"Shengjia Wu;Jiro Hirokawa;Takashi Tomura;Nelson J. G. Fonseca","doi":"10.1109/JMW.2025.3550804","DOIUrl":"https://doi.org/10.1109/JMW.2025.3550804","url":null,"abstract":"This paper discusses the optimal assignment of phase differences between adjacent output ports in a recently proposed generalized one-dimensional orthogonal switching matrix with five beams by considering the RF performance of the compared matrices, including bandwidth of reflection coefficients, frequency dependence of adjacent output phase differences, etc. To demonstrate the advantages of the optimal assignment, the worst assignment is used for comparison. Both assignments use the same couplers but have different values of phase shift, so the beam directions determined by adjacent output phase differences are decided by the phase shifters. The best and worst assignments are identified using the absolute sum of phase differences with reference to a straight waveguide, defined as the difference between the transmission phase of a one-layer-length straight waveguide and the actual required values of one-layer-length phase shifters. The optimal assignment has the smallest absolute sum of phase differences, while the worst assignment has the largest value. This proposed assignment selection technique is general and suitable for matrices with a large component count, which prevents using full-wave analyses to identify preferred configurations. The two assignments are realized using post-wall waveguide technology and designed to operate over the frequency band from 20 GHz to 24 GHz, using PTFE substrates having a thickness of 3.2 mm and a dielectric constant of 2.17. Both matrices are simulated, manufactured and measured by adding transitions to input ports and output ports and connecting with standard waveguide WR42. Both simulated and measured results confirm that the assignment resulting in the smaller absolute sum of phase differences has better performance than the one with the largest sum in terms of transmission and reflection coefficients, phase differences between adjacent output ports, and array factor, confirming the selected metric as a good indicator of the performance of the generalized orthogonal switching matrix.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 3","pages":"654-665"},"PeriodicalIF":6.9,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10944527","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143925227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fast In-Phantom Absorbed Power Density Evaluation at mmWaves Based on Infrared Measurements","authors":"Massinissa Ziane;Artem Boriskin;Maxim Zhadobov","doi":"10.1109/JMW.2025.3539871","DOIUrl":"https://doi.org/10.1109/JMW.2025.3539871","url":null,"abstract":"This article introduces a novel method for fast measurement of the absorbed power density (APD) induced by an electromagnetic field (EMF) emmitting device operating near the human body at frequencies above 6 GHz, taking into account antenna/body interaction. The method employs an infrared (IR) thermography to remotely monitor the heat induced in a reflectivity-based skin equivalent phantom designed to reproduce the EMF scattering properties of human skin and the APD inside the human body. Such a phantom, implemented in the form of a thin planar solid dielectric structure, perturbs the device under test in a similar way as it would be perturbed by the presence of the human body, allowing the absorbed microwave energy to be effectively converted into an IR signal. The heat dynamics and the spatial temperature distribution on the phantom surface are measured by an IR camera and then converted to APD by postprocessing. To enhance the sensitivity of the method and to minimize the effect of heat conduction, spectral filtering is used. The proposed method is validated at 60 GHz using reference antennas (i.e. a cavity-fed dipole array and a pyramidal horn loaded with a slot array). The measured APD is compared with the reference APD simulated in human skin. The high accuracy and significant measurement time reduction, compared to conventional RF-based APD evaluation techniques, demonstrate a promising potential of the proposed IR-based method for fast EMF dosimetry and user exposure compliance testing of millimeter-wave (mmWave) 5 G and 6 G wireless devices.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 2","pages":"269-280"},"PeriodicalIF":6.9,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10930962","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143654889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Microwave Theory and Technology Society Information","authors":"","doi":"10.1109/JMW.2025.3541900","DOIUrl":"https://doi.org/10.1109/JMW.2025.3541900","url":null,"abstract":"","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 2","pages":"C2-C2"},"PeriodicalIF":6.9,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10931044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuting Zhao;Tao Jiang;Simone Genovesi;Giuliano Manara;Filippo Costa
{"title":"Novel Fabrication-Tolerant Resonator Design for mm-Wave Chipless RFID and Its Analytical Model","authors":"Yuting Zhao;Tao Jiang;Simone Genovesi;Giuliano Manara;Filippo Costa","doi":"10.1109/JMW.2025.3540157","DOIUrl":"https://doi.org/10.1109/JMW.2025.3540157","url":null,"abstract":"This paper presents a class of novel fabrication-tolerant resonator design for high-capacity chipless RFID tags. The proposed resonator is based on a high-quality-factor grounded dipole with a single etched slot of variable length. By controlling the slot length, the resonant frequency can be adjusted while exhibiting much lower sensitivity to design variables compared to conventional dipole resonators. This makes the design resilient to fabrication tolerances, a critical requirement for mm-wave frequency bands. This feature enables a two-step fabrication process: first, producing high-precision master tags (e.g., via roll-to-roll fabrication), and second, customizing them by etching slots using a flexible method like laser etching. The presence of a ground plane provides isolation from the tagged object, enabling application to diverse materials and geometries. An analytical model is derived to establish the relationship between slot length changes and resonant frequency shifts, enabling efficient design optimization. Sensitivity analysis shows the proposed resonator has a single parameter sensitivity of 0.008 (feasibility), and overall sensitivity of 0.04 (stability) under <inline-formula><tex-math>$pm 50;mutext{m}$</tex-math></inline-formula> fabrication tolerance, over two orders of magnitude and half lower than the sensitivity of 1 for conventional dipoles. The resonator design is validated through simulations and experiments, demonstrating its potential for high-capacity, fabrication-tolerant chipless RFID tags.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 2","pages":"305-311"},"PeriodicalIF":6.9,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10931042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143654923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Journal of Microwaves Table of Contents","authors":"","doi":"10.1109/JMW.2025.3541906","DOIUrl":"https://doi.org/10.1109/JMW.2025.3541906","url":null,"abstract":"","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 2","pages":"C4-C4"},"PeriodicalIF":6.9,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10931043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Maier;Sebastian Paul;Milan Rother;Simona Di Meo;Marco Pasian;Joerg Schoebel;Vadim Issakov
{"title":"Microwave Imaging for Breast Cancer Detection - A Comparison Between VNA and FMCW Radar","authors":"Martin Maier;Sebastian Paul;Milan Rother;Simona Di Meo;Marco Pasian;Joerg Schoebel;Vadim Issakov","doi":"10.1109/JMW.2025.3541147","DOIUrl":"https://doi.org/10.1109/JMW.2025.3541147","url":null,"abstract":"This paper presents the comparison between microwave imaging for breast cancer detection using a vector network analyzer (VNA) and a frequency-modulated continuous wave (FMCW) radar system. We demonstrate that the VNA within the imaging setup can be replaced by an FMCW radar system without degrading image quality. For this purpose, we show that imaging with a VNA, based on the delay-and-sum (DAS) algorithm, is analytically identical to classic synthetic aperture radar (SAR) imaging. Moreover, we present images acquired from breast phantoms with different inclusions. We obtained images using both a VNA and an FMCW radar system operating from 6–14 GHz. The comparison of the images indicates that the FMCW radar system is a suitable alternative to the VNA for breast cancer detection using microwaves. The entire hardware of the radar system is realized with off-the-shelf components. This enables fast prototyping at a much lower cost compared to using a VNA or comparable radio frequency laboratory equipment.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 2","pages":"291-304"},"PeriodicalIF":6.9,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10931040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143654890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jose L. Medrán del Río;Armando Fernandez-Prieto;Jesus Martel;Christian Elmiger;Dimitra Psychogiou
{"title":"Monolithically-Integrated Bandpass Filters Using Capacitively-Loaded Intertwined Helical Resonators","authors":"Jose L. Medrán del Río;Armando Fernandez-Prieto;Jesus Martel;Christian Elmiger;Dimitra Psychogiou","doi":"10.1109/JMW.2025.3534018","DOIUrl":"https://doi.org/10.1109/JMW.2025.3534018","url":null,"abstract":"This paper presents a novel compact 3D bandpass filter (BPF) concept based on new classes of intertwined helical resonators. The concept is demonstrated by three unique RF filter architectures: a second-order single-band BPF, a second-order dual-band BPF, and a differential single-band BPF. The filter designs are based on coupled-resonator theory, and their implementation is performed using stereolithography apparatus (SLA) 3D printing to create monolithic, screwless structures with ultra-low weight (20–65 gr) and minimal loss. The proposed intertwined helical resonator-based BPF concept, which enables designs with compact size and large fractional bandwidth (FBW) with transmission zeroes (TZ), has been experimentally validated. Manufactured prototypes have demonstrated the following RF performance: single-band BPF: center frequency of 1.08 GHz, 3 dB FBW of 15.5%, and insertion loss (IL) of 0.08 dB; dual-band BPF: passbands centered at 0.84 GHz and 1.53 GHz, with a 3 dB FBW of 19% and 6.5% and IL of 0.2 dB and 0.55 dB, respectively; differential single-band BPF: center frequency of 0.78 GHz, 3 dB FBW of 4%, and IL of 0.87 dB. To the best of the author's knowledge, this work is the first approach to 3D-printed differential BPFs.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 2","pages":"476-486"},"PeriodicalIF":6.9,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10931065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143654898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}