基于红外测量的毫米波快速模内吸收功率密度评估

IF 6.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Massinissa Ziane;Artem Boriskin;Maxim Zhadobov
{"title":"基于红外测量的毫米波快速模内吸收功率密度评估","authors":"Massinissa Ziane;Artem Boriskin;Maxim Zhadobov","doi":"10.1109/JMW.2025.3539871","DOIUrl":null,"url":null,"abstract":"This article introduces a novel method for fast measurement of the absorbed power density (APD) induced by an electromagnetic field (EMF) emmitting device operating near the human body at frequencies above 6 GHz, taking into account antenna/body interaction. The method employs an infrared (IR) thermography to remotely monitor the heat induced in a reflectivity-based skin equivalent phantom designed to reproduce the EMF scattering properties of human skin and the APD inside the human body. Such a phantom, implemented in the form of a thin planar solid dielectric structure, perturbs the device under test in a similar way as it would be perturbed by the presence of the human body, allowing the absorbed microwave energy to be effectively converted into an IR signal. The heat dynamics and the spatial temperature distribution on the phantom surface are measured by an IR camera and then converted to APD by postprocessing. To enhance the sensitivity of the method and to minimize the effect of heat conduction, spectral filtering is used. The proposed method is validated at 60 GHz using reference antennas (i.e. a cavity-fed dipole array and a pyramidal horn loaded with a slot array). The measured APD is compared with the reference APD simulated in human skin. The high accuracy and significant measurement time reduction, compared to conventional RF-based APD evaluation techniques, demonstrate a promising potential of the proposed IR-based method for fast EMF dosimetry and user exposure compliance testing of millimeter-wave (mmWave) 5 G and 6 G wireless devices.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 2","pages":"269-280"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10930962","citationCount":"0","resultStr":"{\"title\":\"Fast In-Phantom Absorbed Power Density Evaluation at mmWaves Based on Infrared Measurements\",\"authors\":\"Massinissa Ziane;Artem Boriskin;Maxim Zhadobov\",\"doi\":\"10.1109/JMW.2025.3539871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces a novel method for fast measurement of the absorbed power density (APD) induced by an electromagnetic field (EMF) emmitting device operating near the human body at frequencies above 6 GHz, taking into account antenna/body interaction. The method employs an infrared (IR) thermography to remotely monitor the heat induced in a reflectivity-based skin equivalent phantom designed to reproduce the EMF scattering properties of human skin and the APD inside the human body. Such a phantom, implemented in the form of a thin planar solid dielectric structure, perturbs the device under test in a similar way as it would be perturbed by the presence of the human body, allowing the absorbed microwave energy to be effectively converted into an IR signal. The heat dynamics and the spatial temperature distribution on the phantom surface are measured by an IR camera and then converted to APD by postprocessing. To enhance the sensitivity of the method and to minimize the effect of heat conduction, spectral filtering is used. The proposed method is validated at 60 GHz using reference antennas (i.e. a cavity-fed dipole array and a pyramidal horn loaded with a slot array). The measured APD is compared with the reference APD simulated in human skin. The high accuracy and significant measurement time reduction, compared to conventional RF-based APD evaluation techniques, demonstrate a promising potential of the proposed IR-based method for fast EMF dosimetry and user exposure compliance testing of millimeter-wave (mmWave) 5 G and 6 G wireless devices.\",\"PeriodicalId\":93296,\"journal\":{\"name\":\"IEEE journal of microwaves\",\"volume\":\"5 2\",\"pages\":\"269-280\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10930962\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of microwaves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10930962/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10930962/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种考虑天线/人体相互作用的快速测量人体附近6 GHz以上频率电磁场发射装置产生的吸收功率密度(APD)的新方法。该方法采用红外(IR)热成像技术远程监测基于反射率的皮肤等效模体中产生的热量,该模体设计用于重现人体皮肤和人体APD的EMF散射特性。这样一个以薄平面固体介电结构形式实现的幻影,以类似于人体存在的方式干扰被测设备,使吸收的微波能量有效地转换为红外信号。利用红外相机测量体模表面的热动力学和空间温度分布,并通过后处理转换为APD。为了提高方法的灵敏度和减小热传导的影响,采用了光谱滤波。采用参考天线(即腔馈偶极子阵列和加载槽阵的锥体喇叭)在60 GHz频段进行了验证。将测量的APD与人体皮肤模拟的参考APD进行比较。与传统的基于rf的APD评估技术相比,该方法具有高精度和显著的测量时间缩短,表明该方法在毫米波(mmWave) 5g和6g无线设备的快速EMF剂量测定和用户暴露符合性测试中具有广阔的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast In-Phantom Absorbed Power Density Evaluation at mmWaves Based on Infrared Measurements
This article introduces a novel method for fast measurement of the absorbed power density (APD) induced by an electromagnetic field (EMF) emmitting device operating near the human body at frequencies above 6 GHz, taking into account antenna/body interaction. The method employs an infrared (IR) thermography to remotely monitor the heat induced in a reflectivity-based skin equivalent phantom designed to reproduce the EMF scattering properties of human skin and the APD inside the human body. Such a phantom, implemented in the form of a thin planar solid dielectric structure, perturbs the device under test in a similar way as it would be perturbed by the presence of the human body, allowing the absorbed microwave energy to be effectively converted into an IR signal. The heat dynamics and the spatial temperature distribution on the phantom surface are measured by an IR camera and then converted to APD by postprocessing. To enhance the sensitivity of the method and to minimize the effect of heat conduction, spectral filtering is used. The proposed method is validated at 60 GHz using reference antennas (i.e. a cavity-fed dipole array and a pyramidal horn loaded with a slot array). The measured APD is compared with the reference APD simulated in human skin. The high accuracy and significant measurement time reduction, compared to conventional RF-based APD evaluation techniques, demonstrate a promising potential of the proposed IR-based method for fast EMF dosimetry and user exposure compliance testing of millimeter-wave (mmWave) 5 G and 6 G wireless devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信