使用电容负载缠绕螺旋谐振器的单片集成带通滤波器

IF 6.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jose L. Medrán del Río;Armando Fernandez-Prieto;Jesus Martel;Christian Elmiger;Dimitra Psychogiou
{"title":"使用电容负载缠绕螺旋谐振器的单片集成带通滤波器","authors":"Jose L. Medrán del Río;Armando Fernandez-Prieto;Jesus Martel;Christian Elmiger;Dimitra Psychogiou","doi":"10.1109/JMW.2025.3534018","DOIUrl":null,"url":null,"abstract":"This paper presents a novel compact 3D bandpass filter (BPF) concept based on new classes of intertwined helical resonators. The concept is demonstrated by three unique RF filter architectures: a second-order single-band BPF, a second-order dual-band BPF, and a differential single-band BPF. The filter designs are based on coupled-resonator theory, and their implementation is performed using stereolithography apparatus (SLA) 3D printing to create monolithic, screwless structures with ultra-low weight (20–65 gr) and minimal loss. The proposed intertwined helical resonator-based BPF concept, which enables designs with compact size and large fractional bandwidth (FBW) with transmission zeroes (TZ), has been experimentally validated. Manufactured prototypes have demonstrated the following RF performance: single-band BPF: center frequency of 1.08 GHz, 3 dB FBW of 15.5%, and insertion loss (IL) of 0.08 dB; dual-band BPF: passbands centered at 0.84 GHz and 1.53 GHz, with a 3 dB FBW of 19% and 6.5% and IL of 0.2 dB and 0.55 dB, respectively; differential single-band BPF: center frequency of 0.78 GHz, 3 dB FBW of 4%, and IL of 0.87 dB. To the best of the author's knowledge, this work is the first approach to 3D-printed differential BPFs.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 2","pages":"476-486"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10931065","citationCount":"0","resultStr":"{\"title\":\"Monolithically-Integrated Bandpass Filters Using Capacitively-Loaded Intertwined Helical Resonators\",\"authors\":\"Jose L. Medrán del Río;Armando Fernandez-Prieto;Jesus Martel;Christian Elmiger;Dimitra Psychogiou\",\"doi\":\"10.1109/JMW.2025.3534018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel compact 3D bandpass filter (BPF) concept based on new classes of intertwined helical resonators. The concept is demonstrated by three unique RF filter architectures: a second-order single-band BPF, a second-order dual-band BPF, and a differential single-band BPF. The filter designs are based on coupled-resonator theory, and their implementation is performed using stereolithography apparatus (SLA) 3D printing to create monolithic, screwless structures with ultra-low weight (20–65 gr) and minimal loss. The proposed intertwined helical resonator-based BPF concept, which enables designs with compact size and large fractional bandwidth (FBW) with transmission zeroes (TZ), has been experimentally validated. Manufactured prototypes have demonstrated the following RF performance: single-band BPF: center frequency of 1.08 GHz, 3 dB FBW of 15.5%, and insertion loss (IL) of 0.08 dB; dual-band BPF: passbands centered at 0.84 GHz and 1.53 GHz, with a 3 dB FBW of 19% and 6.5% and IL of 0.2 dB and 0.55 dB, respectively; differential single-band BPF: center frequency of 0.78 GHz, 3 dB FBW of 4%, and IL of 0.87 dB. To the best of the author's knowledge, this work is the first approach to 3D-printed differential BPFs.\",\"PeriodicalId\":93296,\"journal\":{\"name\":\"IEEE journal of microwaves\",\"volume\":\"5 2\",\"pages\":\"476-486\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10931065\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of microwaves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10931065/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10931065/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于新型缠绕螺旋谐振器的新型紧凑型三维带通滤波器(BPF)概念。该概念通过三种独特的RF滤波器架构来演示:二阶单带BPF、二阶双带BPF和差分单带BPF。该滤波器设计基于耦合谐振器理论,并使用立体光刻设备(SLA) 3D打印来实现,以创建具有超低重量(20-65克)和最小损耗的单片无螺旋结构。提出的基于缠绕螺旋谐振器的BPF概念,可以实现具有传输零点(TZ)的紧凑尺寸和大分数带宽(FBW)的设计,并已经过实验验证。已制造的样机显示了以下射频性能:单频段BPF:中心频率1.08 GHz, 3 dB FBW为15.5%,插入损耗(IL)为0.08 dB;双频BPF:以0.84 GHz和1.53 GHz为中心的通带,3 dB FBW分别为19%和6.5%,IL分别为0.2 dB和0.55 dB;差分单带BPF:中心频率0.78 GHz, 3 dB FBW为4%,IL为0.87 dB。据作者所知,这项工作是3d打印差分bp的第一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monolithically-Integrated Bandpass Filters Using Capacitively-Loaded Intertwined Helical Resonators
This paper presents a novel compact 3D bandpass filter (BPF) concept based on new classes of intertwined helical resonators. The concept is demonstrated by three unique RF filter architectures: a second-order single-band BPF, a second-order dual-band BPF, and a differential single-band BPF. The filter designs are based on coupled-resonator theory, and their implementation is performed using stereolithography apparatus (SLA) 3D printing to create monolithic, screwless structures with ultra-low weight (20–65 gr) and minimal loss. The proposed intertwined helical resonator-based BPF concept, which enables designs with compact size and large fractional bandwidth (FBW) with transmission zeroes (TZ), has been experimentally validated. Manufactured prototypes have demonstrated the following RF performance: single-band BPF: center frequency of 1.08 GHz, 3 dB FBW of 15.5%, and insertion loss (IL) of 0.08 dB; dual-band BPF: passbands centered at 0.84 GHz and 1.53 GHz, with a 3 dB FBW of 19% and 6.5% and IL of 0.2 dB and 0.55 dB, respectively; differential single-band BPF: center frequency of 0.78 GHz, 3 dB FBW of 4%, and IL of 0.87 dB. To the best of the author's knowledge, this work is the first approach to 3D-printed differential BPFs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信