Qiyue Zou , Jun Yang , Yuqing Zhang , Yi Bai , Junjie Wang
{"title":"Variation in community heat vulnerability for Shenyang City under local climate zone perspective","authors":"Qiyue Zou , Jun Yang , Yuqing Zhang , Yi Bai , Junjie Wang","doi":"10.1016/j.buildenv.2024.112242","DOIUrl":"10.1016/j.buildenv.2024.112242","url":null,"abstract":"<div><div>Assessing heat vulnerability is essential for analyzing and improving the urban thermal environment. We developed a heat vulnerability model to examine the spatial distribution characteristics of thermal vulnerability and its relationship with local climate zones (LCZs) in Shenyang City at the community level. Additionally, we thoroughly explored the change patterns of heat vulnerability in communities with similar LCZ components. Our findings revealed that: (1) Building-type LCZs exhibited a non-uniform distribution, with LCZ8 representing the largest proportion, and LCZ1 and LCZ2 accounting for the smallest proportions. Nature-type LCZ communities were distributed along the Hun River and in some areas of the northwest and south, with LCZD having the largest proportion and LCZB the smallest. (2) Building height was positively correlated with the heat vulnerability index (HVI), while building density had minimal impact on HVI. LCZ8 had the highest HVI, and LCZG had the lowest. (3) Clustering the communities revealed that buildings had a greater impact on HVI than impervious surfaces. Creating strong ventilation and increasing the number of nature-type LCZs were identified as the most important factors for community development. These results highlight the differences in heat vulnerability among communities with various landscape configurations, providing a theoretical basis for targeted community structure adjustments and the reduction of urban thermal risks.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"267 ","pages":"Article 112242"},"PeriodicalIF":7.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Source apportionment and health-risk assessment of PM2.5-bound elements in indoor/outdoor residential buildings in Chinese megacities","authors":"Wenjing Ji , Junjie Zeng , Kaijia Zhao , Jing Liu","doi":"10.1016/j.buildenv.2024.112250","DOIUrl":"10.1016/j.buildenv.2024.112250","url":null,"abstract":"<div><div>Particulate matter with a diameter of 2.5 μm or smaller (PM<sub>2.5</sub>) in indoor environments originates from both indoor and outdoor sources, influencing associated human health risks through different compositions. This study simultaneously collected and analyzed indoor and outdoor PM<sub>2.5</sub> samples in three major Chinese megacities—Beijing, Shanghai, and Shenzhen—to characterize PM<sub>2.5</sub> sources and assess their health impacts. A total of seven distinct sources, both indoor and outdoor, were identified for PM<sub>2.5</sub>: indoor activities, metal smelting, industrial activities, soil dust, vehicle emissions, coal combustion, and fuel oil combustion. Indoor activities accounted for approximately 20 % of the residential indoor PM<sub>2.5</sub>, with the remainder predominantly due to outdoor PM<sub>2.5</sub> infiltration. The contributions of indoor activities to noncarcinogenic and carcinogenic risks ranged from 3.6 % to 28.5 %, whereas outdoor PM<sub>2.5</sub> sources posing greater health risks. The cumulative noncarcinogenic risks for adults in Beijing, Shanghai, and Shenzhen were 0.99, 1.15, and 0.72, respectively, slightly higher than those for children. The cumulative carcinogenic risks for adults were approximately five times those for children, with values of 6.90 × 10<sup>−5</sup>, 6.34 × 10<sup>−5</sup>, and 6.83 × 10<sup>−5</sup>, respectively, all surpassing the acceptable limit. Noncarcinogenic risks were predominantly attributed to Ni, Co, and Mn, contributing over 85 % to the total risk, while Cr was the primary contributor (>89 %) to carcinogenic risks. Indoor environmental exposure accounting for over 80 % of noncarcinogenic and carcinogenic risks for adults, and exceeding 90 % for children. This study provides significant insights into the effective control of PM<sub>2.5</sub> pollution and the reduction of health risks from a source perspective.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"267 ","pages":"Article 112250"},"PeriodicalIF":7.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of ventilation and infiltration rates using physics-informed neural networks: Impact of space operation and meteorological factors","authors":"Jiin Son , Jihoon Kim , Junemo Koo","doi":"10.1016/j.buildenv.2024.112249","DOIUrl":"10.1016/j.buildenv.2024.112249","url":null,"abstract":"<div><div>This study presents the development and application of a Physics-Informed Neural Network (PINN) model to estimate ventilation and infiltration rates using long-term observation data, addressing the challenge of dynamically varying space operations and meteorological conditions. A central research equestion is: How can we accurately estimate ventilation rates while accounting for these time-varying factors? Traditional tracer gas methods require numerous measurements to accurately characterize air change rates (ACR) under dynamic space operations and varying meteorological conditions. Our PINN model integrates these fluctuating factors, providing a more precise analysis of their transient effects on ACR. We employed Shapley Additive Explanations (SHAP) to interpret the sensitivity and contributions of each influencing factor. Our findings indicate that the state of windows and doors significantly affects spatial operations, while wind speed and direction are the most impactful meteorological factors. The interaction between open windows and doors results in higher ventilation rates compared to their individual effects. Wind-related factors cause ACR variations exceeding 200 %, with the wind direction relative to the office window playing a crucial role. Additionally, external temperature and indoor-outdoor temperature differences show a strong correlation with ACR. However, limitations include the lack of outdoor CO<sub>2</sub> measurements and the assumption of uniform indoor CO<sub>2</sub> levels, which may affect accuracy. Generalizability is also limited due to the specificity of the space studied. Future work should incorporate outdoor CO<sub>2</sub> data and multiple spaces to enhance model applicability. This study contributes to optimizing ventilation strategies for better indoor air quality and energy efficiency.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"267 ","pages":"Article 112249"},"PeriodicalIF":7.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of momentum sources on pedestrian-level peak wind predictions of an urban-like array using large-eddy simulations and statistical models","authors":"T. Sanemitsu , W. Wang , N. Ikegaya","doi":"10.1016/j.buildenv.2024.112244","DOIUrl":"10.1016/j.buildenv.2024.112244","url":null,"abstract":"<div><div>The effect of urban geometries on the peak wind speed at the pedestrian level was investigated using simplified urban-like arrays in wind tunnel experiments. To scrutinize the turbulent flow's spatial and temporal characteristics, large-eddy simulations (LESs) were adopted to simulate suitable experimental conditions using an external force accelerating the flow with the periodic boundary condition. Although previous studies have revealed that conventional LESs use a constant pressure gradient as a momentum source, driving the flow differs from those in developing boundary layers in experiments, and the effect of the momentum source on peak wind speeds at the pedestrian level remains unknown. Therefore, this study used a series of LESs based on the three driving methods to investigate the impact of the momentum provision on the relevant statistics and peak values. The turbulent statistics showed good agreement among the cases driven by the momentum sources regardless of the shape of the profiles of the momentum source. Peak wind speeds, quantified by percentiles, were estimated using statistical models based on the Weibull distribution. Overall, the results showed a good agreement between the LESs and statistical model estimations when higher-order moments were adopted as the estimation parameters.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"267 ","pages":"Article 112244"},"PeriodicalIF":7.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive estimation model for the health economic impact of the residential environment","authors":"Tomomitsu Kamata , Junta Nakano , Ryota Fujii , Shuzo Murakami , Toshiharu Ikaga , Shun Kawakubo","doi":"10.1016/j.buildenv.2024.112233","DOIUrl":"10.1016/j.buildenv.2024.112233","url":null,"abstract":"<div><div>The residential environment impacts the health and economic status of residents, for example, via medical costs and income loss from absenteeism. However, previous studies often do not consider assessments of the thermal, acoustic, light, hygiene, safety, and security environments in the residence simultaneously, and the age and sex of the residents. Therefore, this study proposed improvements to a previous method and validated the improved method for estimating health economic impact that considers the residential environment conditions and residents comprehensively. The individual scale validation demonstrated that the relationship between the comprehensive assessment of the residential environment and the risk of 10 types of diseases (diabetes mellitus, cerebrovascular diseases, disorders of conjunctiva, hypertensive diseases, heart diseases, upper respiratory tract disorders, chronic obstructive pulmonary disease, asthma, dermatitis and eczema, and inflammatory arthropathies) differs by age and sex. When these disease-related economic losses were aggregated, older males were estimated to suffer the greatest losses from their residential environment in Japan. The economic impact of residential environment by resident attributes was aggregated according to the population distribution as an advanced application of the estimation model. The total economic loss from substandard residential environments across Japan was estimated to be about JPY 725 billion per year. These results should incentivize residents and policymakers to improve the residential environment. The estimation-model development process is universally applicable and may lead to the creation of optimized benchmarks in every region of the world, thereby contributing to improvements in the residential environment aimed at reducing health risks and economic losses.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"267 ","pages":"Article 112233"},"PeriodicalIF":7.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy retrofitting using advanced building envelope materials for sustainable housing: A review","authors":"Khalid Ghazwani , Thomas Beach , Yacine Rezgui","doi":"10.1016/j.buildenv.2024.112243","DOIUrl":"10.1016/j.buildenv.2024.112243","url":null,"abstract":"<div><div>Global energy consumption by buildings represents 34% of final energy use and 37% of energy-related CO₂ emissions, emphasising the critical need for sustainable, energy-efficient housing solutions. Despite significant advancements, there is a substantial gap in effectively applying advanced materials within building envelopes to achieve optimal energy efficiency, particularly in hot climates. This study focuses on the residential sector's excessive energy consumption and greenhouse gas emissions, primarily caused by inadequate insulation and outdated construction practices. The objective is to systematically evaluate the effectiveness, performance, economic and environmental impacts, retrofitting techniques and challenges of using advanced building envelope materials, phase change materials, aerogels, vacuum insulation panels, and heat-reflective coatings for energy retrofitting in residential buildings. A comprehensive systematic review was conducted following PRISMA guidelines using the Scopus database. Rigorous inclusion and exclusion criteria produced 76 high-quality studies. The analysis synthesises findings on material performance under various climatic conditions and application strategies and their impacts on energy efficiency, thermal comfort, durability, cost-effectiveness, and sustainability. Results show that advanced materials have immense potential. They can significantly improve thermal regulation, reduce energy usage for heating and cooling, and lower CO₂ emissions with benefits varying across climates and application strategies. Challenges include high initial costs, long-term performance uncertainties, implementation issues, and broader applicability. This research uniquely contributes by comprehensively synthesising recent advancements, analysing economic feasibility and environmental impacts, offering valuable insights for stakeholders. It also emphasises the need for future research to address limitations and promote sustainable, energy-efficient building solutions.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"267 ","pages":"Article 112243"},"PeriodicalIF":7.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Controlled airflow fluctuations for improved performance of mist cooling systems: Enhanced evaporation and thermal comfort","authors":"Jaafar Younes , Arsen Krikor Melikov , Nesreen Ghaddar","doi":"10.1016/j.buildenv.2024.112234","DOIUrl":"10.1016/j.buildenv.2024.112234","url":null,"abstract":"<div><div>Rising global temperatures and resulting heat stress on people necessitate sustainable outdoor cooling solutions. Mist cooling offers promise, and this work proposes a novel approach: incorporating fluctuating airflows into misting systems. We hypothesize that mist-cooled fluctuating airflows could provide more efficient outdoor cooling for people, for two reasons: 1) Increased turbulence and mixing promoting higher water evaporation rates; 2) dynamic airflow leveraging transient thermal perception for improved comfort.</div><div>Wind tunnel experiments and numerical simulations support this hypothesis, revealing that fluctuating flow, compared to constant flow with the same average velocity, enhances evaporation. Lower frequencies, higher amplitudes, and profiles with steeper gradients led to higher evaporation rates. These findings assume an idealized domain, excluding natural wind patterns. Furthermore, predictions confirmed that fluctuating flows consistently provide superior thermal comfort compared to constant flows. Fluctuating airflow with misting achieved equivalent comfort at 38% lower energy consumption compared to fluctuating flow without misting and 81% lower compared to constant flow with misting. The proposed technology has the potential to improve outdoor comfort and decrease resource consumption. It is scalable, not complex, and can be implemented into existing systems, though it may face challenges such as increased wear on fan components.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"267 ","pages":"Article 112234"},"PeriodicalIF":7.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feifan He , Jialin Wu , Yayun Li , Ming Fu , Sheng He , Wenguo Weng
{"title":"The impact of leak gap size and position on surgical mask performance of source control: A numerical study","authors":"Feifan He , Jialin Wu , Yayun Li , Ming Fu , Sheng He , Wenguo Weng","doi":"10.1016/j.buildenv.2024.112241","DOIUrl":"10.1016/j.buildenv.2024.112241","url":null,"abstract":"<div><div>Surgical masks are widely used for infectious source control by preventing infected individuals from transmitting pathogens. However, poor fit can create gaps between the mask and face, reducing their effectiveness. In this study, a numerical model was developed based on realistic surgical mask geometry with peripheral gaps of varying sizes and positions, fitted onto a breathing manikin. Exhalation leakage airflow dynamics and aerosol pathogen dispersion were investigated using a validated computational fluid dynamics (CFD) model with porous media. Results indicate that despite the presence of leaks, surgical masks are effective in controlling the spread of pathogens, with maximum airflow leakage at 9.11% and pathogen leakage at 16.83%. The average velocity of leaked airflow ranged from 0.12 m/s to 1.43 m/s, depending on the gap size and position. The position of the gap had little impact on the airflow and pathogen leakage fractions. Correlations between the average velocity of net leakage flow, leakage fractions of airflow and pathogens, and gap size were developed. Pathogens spread most widely from bottom leaks, followed by side and top leaks, with bottom leaks releasing up to 9.7 times more contaminated air than top leaks and 6.5 times more than side leaks. The findings also suggest that smaller gaps are associated with higher initial velocities of leakage, which in turn lead to wider dispersion of pathogens.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"267 ","pages":"Article 112241"},"PeriodicalIF":7.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joonsoo S. Lyeo , Michael D. Wong , Natalie Clyke , Becky Big Canoe , Penny Kinnear , Helen Stopps , Nicholas D. Spence , Sarah R. Haines
{"title":"Corrigendum to “Ten questions concerning First Nations on-reserve housing in Canada”","authors":"Joonsoo S. Lyeo , Michael D. Wong , Natalie Clyke , Becky Big Canoe , Penny Kinnear , Helen Stopps , Nicholas D. Spence , Sarah R. Haines","doi":"10.1016/j.buildenv.2024.112219","DOIUrl":"10.1016/j.buildenv.2024.112219","url":null,"abstract":"","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"267 ","pages":"Article 112219"},"PeriodicalIF":7.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing thermal comfort in hot and humid (tropical) climates: Urban outdoor and semi-outdoor conditions in waiting areas of railway stations","authors":"Wannapol Sadakorn , Suppapon Tetiranont , Lapyote Prasittisopin , Sakdirat Kaewunruen","doi":"10.1016/j.buildenv.2024.112240","DOIUrl":"10.1016/j.buildenv.2024.112240","url":null,"abstract":"<div><div>The global phenomenon of global warming has intensified thermal discomfort in tropical metropolitan areas, where rising temperatures and the urban heat island significantly impact outdoor and semi-outdoor environments. These effects are particularly pronounced in tropical metropolitan areas, where the hot and humid climate exacerbates thermal stress. Despite the critical need to understand thermal comfort in such settings, existing research remains limited. This study addresses the research gap by examining how global warming affects thermal comfort in outdoor and semi-outdoor urban spaces, providing insights into the unique challenges these environments present. The study sought to assess both objective physical data and subjective Thermal Sensation Votes (TSV) and preferences. The results suggest that the temperature neutrality needed for thermal comfort is 29.02 °C (R<sup>2</sup> = 0.95), and a temperature comfortable range of 23.84–30.79 °C (R<sup>2</sup> = 0.84) is within the acceptable comfort level. This range surpasses the current averages, emphasizing the importance of environmental enhancements for better thermal comfort. The regression analysis indicates that operational temperature (T<sub>o</sub>), mean radiant temperature (T<sub>mrt</sub>), and body mass index (BMI) are significant variables that may accurately predict thermal sensation. Furthermore, results indicate that individuals with a higher BMI often have a reduced ability to withstand elevated temperatures. This study emphasizes the need of considering both environmental and human factors in order to improve the human comfort level and quality of life.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"267 ","pages":"Article 112240"},"PeriodicalIF":7.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}