Dániel Lakatos, Martina Idler, Selina Stibitzky, Jennifer Amann, Jakob Schuschkewitz, Dominik Krayl, Judith Liebau, Jan-Hendrik Grosch, Erik Arango Gutierrez, Simon Kluters
{"title":"Buffer system improves the removal of host cell protein impurities in monoclonal antibody purification","authors":"Dániel Lakatos, Martina Idler, Selina Stibitzky, Jennifer Amann, Jakob Schuschkewitz, Dominik Krayl, Judith Liebau, Jan-Hendrik Grosch, Erik Arango Gutierrez, Simon Kluters","doi":"10.1002/bit.28844","DOIUrl":"10.1002/bit.28844","url":null,"abstract":"<p>Polysorbates (PS) are commonly used as stabilizers of biopharmaceuticals such as monoclonal antibodies (mAbs). However, they are prone to chemical and enzymatic degradation. The latter can be caused by residual host cell proteins (HCPs) in the drug substance. Degradation affects the functionality of the PS surfactant which can lead to formation of particles. An increasing number of publications describe enzymatic PS degradation. Significant efforts have been made to characterize HCP removal during Downstream Processing (DSP) of mAbs and to develop mitigation strategies. Here we describe the use of glycine buffer for acidic elution in Protein A affinity chromatography compared to acetate buffer, which is more commonly used in the biopharmaceutical industry. Increased turbidity was observed during pH re-adjustment after low pH virus inactivation when using glycine buffer. Analytical data suggests that this turbidity is caused by the formation of precipitates which include HCP and DNA impurities. Additionally, as a zwitterion, glycine does not contribute to conductivity; this further enhances HCP removal during anion-exchange flow-through chromatography. Although glycine is well known as a possible elution buffer for Protein A affinity chromatography, its positive impact on HCP removal and PS stability have not yet been described in literature.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"121 12","pages":"3869-3880"},"PeriodicalIF":3.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.28844","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bikram Adhikari, Prasanga Barakoti, Mina B. Pantcheva, Melissa D. Krebs
{"title":"3D printed gelatin methacryloyl hydrogels for perfusion culture of human trabecular meshwork cells and glaucoma studies","authors":"Bikram Adhikari, Prasanga Barakoti, Mina B. Pantcheva, Melissa D. Krebs","doi":"10.1002/bit.28849","DOIUrl":"https://doi.org/10.1002/bit.28849","url":null,"abstract":"Glaucoma, a progressive eye disease leading to irreversible blindness, currently affects over 70 million people globally. Elevated intraocular pressure (IOP) is implicated in its development. IOP is carefully regulated by the trabecular meshwork (TM). However, studying TM behavior has been limited to traditional tissue culture studies or costly ex vivo cultures of animal and donor eyes. Developing novel functional TM models could enhance cell/tissue behavior understanding and aid therapeutic development for glaucoma. In this study, we 3D printed a simplified and reproducible model of the human TM (hTM) and studied hTM cell behavior under static and dynamic cultures. Gelatin Methacryloyl bioinks proved suitable for printing with viable and proliferative hTM cells expressing crucial marker genes in response to glucocorticoid induction. This, to our knowledge, is the first functional 3D printed hTM model and aims to facilitate TM research. Moreover, this easily reproducible model could also be applicable in the study of numerous other cell types throughout the body.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"9 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142237018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Niklas Adebar, Sabine Arnold, Liliana M. Herrera, Victor N. Emenike, Thomas Wucherpfennig, Jens Smiatek
{"title":"Physics-informed neural networks for biopharmaceutical cultivation processes: Consideration of varying process parameter settings","authors":"Niklas Adebar, Sabine Arnold, Liliana M. Herrera, Victor N. Emenike, Thomas Wucherpfennig, Jens Smiatek","doi":"10.1002/bit.28851","DOIUrl":"https://doi.org/10.1002/bit.28851","url":null,"abstract":"We present a new modeling approach for the study and prediction of important process outcomes of biotechnological cultivation processes under the influence of process parameter variations. Our model is based on physics-informed neural networks (PINNs) in combination with kinetic growth equations. Using Taylor series, multivariate external process parameter variations for important variables such as temperature, seeding cell density and feeding rates can be integrated into the corresponding kinetic rates and the governing growth equations. In addition to previous approaches, PINNs also allow continuous and differentiable functions as predictions for the process outcomes. Accordingly, our results show that PINNs in combination with Taylor-series expansions for kinetic growth equations provide a very high prediction accuracy for important process variables such as cell densities and concentrations as well as a detailed study of individual and combined parameter influences. Furthermore, the proposed approach can also be used to evaluate the outcomes of new parameter variations and combinations, which enables a saving of experiments in combination with a model-driven optimization study of the design space.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"13 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Esther E.A. Cramer, Kim C.J. Hermsen, Linda M. Kock, Keita Ito, Sandra Hofmann
{"title":"Culture system for longitudinal monitoring of bone dynamics ex vivo","authors":"Esther E.A. Cramer, Kim C.J. Hermsen, Linda M. Kock, Keita Ito, Sandra Hofmann","doi":"10.1002/bit.28848","DOIUrl":"https://doi.org/10.1002/bit.28848","url":null,"abstract":"To quantify and visualize both bone formation and resorption within osteochondral explants cultured ex vivo is challenging with the current analysis techniques. An approach that enables monitoring of bone remodeling dynamics is longitudinal microcomputed tomography (µCT), a non-destructive technique that relies on repeated µCT scanning and subsequent registration of consecutive scans. In this study, a two-compartment culture system suitable for osteochondral explants that allowed for µCT scanning during ex vivo culture was established. Explants were scanned repeatedly in a fixed orientation, which allowed assessment of bone remodeling due to adequate image registration. Using this method, bone formation was found to be restricted to the outer surfaces when cultured statically. To demonstrate that the culture system could capture differences in bone remodeling, explants were cultured statically and under dynamic compression as loading promotes osteogenesis. No quantitative differences between static and dynamic culture were revealed. Still, only in dynamic conditions, bone formation was visualized on trabecular surfaces located within the inner cores, suggesting enhanced bone formation towards the center of the explants upon mechanical loading. Taken together, the ex vivo culture system in combination with longitudinal µCT scanning and subsequent registration of images demonstrated potential for evaluating bone remodeling within explants.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"195 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Clear insight into complex multimodal resins and impurities to overcome recombinant protein purification challenges: A review","authors":"Maryam Moazami Goodarzi, Reza Jalalirad","doi":"10.1002/bit.28846","DOIUrl":"https://doi.org/10.1002/bit.28846","url":null,"abstract":"Increasing attention has been paid to the purity of therapeutic proteins imposing extensive costs and challenges to the downstream processing of biopharmaceuticals. One of the efforts, that has been exerted to overcome such limitations, was developing multimodal or mixed‐mode chromatography (MMC) resins for launching selective, orthogonal, non‐affinity purification platforms. Despite relatively extensive usage of MMC resins, their real potential and fulfillment have not been extensively reviewed yet. In this work, the explanation of practical and key aspects of downstream processing of recombinant proteins with or without MMC resins was debated, as being useful for further purification process development. This review has been written as a step‐by‐step guide to deconvolute both inherent protein purification and MMC complexities. Here, after complete elucidation of the potential of MMC resins, the effects of frequently used additives (mobile phase modifiers) and their possible interactions during the purification process, the critical characteristics of common product‐related impurities (e.g., aggregates, charge variants, fragments), host‐related impurities (e.g., host cell protein and DNA) and process related impurities (e.g., endotoxin, and viruses) with solved or unsolved challenges of traditional and MMC resins have been discussed. Such collective experiences which are reported in this study could be considered as an applied guide for developing successful downstream processing in challenging conditions by providing a clear insight into complex MMC resins and impurities.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"33 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Active diagnostic ingredients (ADIs) for PCR: A mini-bioreactor producing dNTPs with silica immobilized R5-kinases","authors":"Anna R. Bird, Elizabeth A. H. Hall","doi":"10.1002/bit.28837","DOIUrl":"10.1002/bit.28837","url":null,"abstract":"<p>Low availability of routine nucleic acid amplification testing (NAAT) during infection outbreaks, especially in less resourced environments, was highlighted by the Covid pandemic. One of the barriers lies with the supply chain and cost of the active diagnostic ingredients (ADIs) that are the reagents for NAATs. This work explores a novel synthesis method to produce a key NAAT reagent, namely the 2′-deoxynucleoside 5′-triphosphate (dNTPs), via a reusable enzyme bioreactor, that can be integrated into a NAAT workflow. A self-immobilizing R5-silaffin kinase fusion enzyme was designed for immobilization on silica, converting dNMPs to their respective dNTP ADIs for PCR in a R5-kinase mini-bioreactor, designed to be implemented in a reusable device, stable over 2 months, when stored at 4°C. The performance is demonstrated for PCR reactions of the lambda genome and showed successful amplification up to 7.5 kb. In comparison with commercial dNTPs, in <i>Plasmodium malariae</i> NAATs, a high linear correlation was shown between the <i>C<sub>t</sub></i> value and the log(Copy Number), with lower incidence of false positives than with the commercial dNTPs. Overall a pathway to generate deoxynucleotides from monophosphate precursors was demonstrated, and an immobilized enzyme mini-bioreactor investigated as a proof-of-principle for work-flow integration with NAAT in low-resource research and diagnostics labs.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"121 12","pages":"3834-3847"},"PeriodicalIF":3.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.28837","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142237017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rihui Kang, Jiaxing Wu, Rong Cheng, Meng Li, Luxiao Sang, Hulin Zhang, Shengbo Sang
{"title":"3D bioprinting technology and equipment based on microvalve control","authors":"Rihui Kang, Jiaxing Wu, Rong Cheng, Meng Li, Luxiao Sang, Hulin Zhang, Shengbo Sang","doi":"10.1002/bit.28850","DOIUrl":"10.1002/bit.28850","url":null,"abstract":"<p>3D bioprinting technology is widely used in biomedical fields such as tissue regeneration and constructing pathological model. The prevailing printing technique is extrusion-based bioprinting. In this printing method, the bioink needs to meet both printability and functionality, which are often conflicting requirements. Therefore, this study has developed an innovative microvalve-based equipment, incorporating components such as pressure control, a three-dimensional motion platform, and microvalve. Here, we present a droplet-based method for constructing complex three-dimensional structures. By leveraging the rapid switching characteristics of the microvalve, this equipment can achieve precise printing of bio-materials with viscosities as low as 10mPa·s, significantly expanding the biofabrication window for bioinks. This technology is of great significance for 3D bioprinting in tissue engineering and lays a solid foundation for the construction of complex artificial organ tissues.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"121 12","pages":"3768-3781"},"PeriodicalIF":3.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142237021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chen-Yu Chen, Dana Motabar, Fauziah Rahma Zakaria, Eunkyoung Kim, Benjamin Wu, Gregory F. Payne, William E. Bentley
{"title":"Electrobiofabrication of antibody sensor interfaces within a 3D printed device yield rapid and robust electrochemical measurements of titer and glycan structure","authors":"Chen-Yu Chen, Dana Motabar, Fauziah Rahma Zakaria, Eunkyoung Kim, Benjamin Wu, Gregory F. Payne, William E. Bentley","doi":"10.1002/bit.28839","DOIUrl":"10.1002/bit.28839","url":null,"abstract":"<p>We report the integration of 3D printing, electrobiofabrication, and protein engineering to create a device that enables near real-time analysis of monoclonal antibody (mAb) titer and quality. 3D printing was used to create the macroscale architecture that can control fluidic contact of a sample with multiple electrodes for replicate measurements. An analysis “chip” was configured as a “snap-in” module for connecting to a 3D printed housing containing fluidic and electronic communication systems. Electrobiofabrication was used to functionalize each electrode by the assembly of a hydrogel interface containing biomolecular recognition and capture proteins. Specifically, an electrochemical thiol oxidation is used to assemble a thiolated polyethylene glycol hydrogel, that in turn is covalently coupled to either a cysteine-tagged protein G that binds the antibody's Fc region or a lectin that binds the glycans of target mAb analytes. We first show the design, assembly, and testing of the hardware device. Then, we show the transition of a step-by-step sensing methodology (e.g., mix, incubate, wash, mix, incubate, wash, measure) into the current method where functionalization, antibody capture, and assessment are performed in situ and in parallel channels. Both titer and glycan analyses were found to be linear with antibody concentration (to 0.2 mg/L). We further found the interfaces could be reused with remarkably similar results. Because the interface assembly and use are simple, rapid, and robust, we suggest this assessment methodology will be widely applicable, including for other biomolecular process development and manufacturing environments.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"121 12","pages":"3754-3767"},"PeriodicalIF":3.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.28839","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142237020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a multigene expression system using 2A peptides in Rhodosporidium toruloides","authors":"Xiao Guo, Zhenzhen Bai, Huimin Zhao, Shuobo Shi","doi":"10.1002/bit.28843","DOIUrl":"10.1002/bit.28843","url":null,"abstract":"<p>In eukaryotes, gene expression typically requires individual promoter and terminator for each gene, making the expression of multiple genes tedious and sometimes too difficult to handle. This is especially true for underdeveloped nonmodel organisms with few genetic engineering tools and genetic elements such as <i>Rhodosporidium toruloides</i>. In contrast, polycistronic expression offers advantages such as smaller size and ease of cloning. Here we report the development of a multigene expression system using 2A peptides in <i>R. toruloides</i>. First, twenty-two 2A peptides were evaluated for their cleavage efficiencies, which ranged from 33.65% to 93.32%. Subsequently, the 2A peptide of ERBV-1 with the highest efficiency was selected to enable simultaneous expression of four proteins. In addition, we demonstrated the optimization of the α-linolenic acid biosynthetic pathway using ERBV-1 peptide mediated polycistronic expression, which increased the α-linolenic acid production by 104.72%. These results suggest that using ERBV-1 peptide is an efficient strategy for multigene expression in <i>R. toruloides</i>.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"121 12","pages":"3893-3905"},"PeriodicalIF":3.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James Tang, Matthew Becker, Abraham Lenhoff, Wilfred Chen
{"title":"Engineering of heterobifunctional biopolymers for tunable binding and precipitation of Strep-Tag proteins and virus-like nanoparticles","authors":"James Tang, Matthew Becker, Abraham Lenhoff, Wilfred Chen","doi":"10.1002/bit.28845","DOIUrl":"10.1002/bit.28845","url":null,"abstract":"<p>Affinity precipitation is a powerful separation method in that it combines the binding selectivity of affinity chromatography with precipitation of captured biomolecules via phase separation triggered by small changes in the environment, e.g., pH, ionic strength, temperature, light, etc. Elastin-like polypeptides (ELPs) are thermally responsive biopolymers composed of pentapeptide repeats VPGVG that undergo reversible phase separation, where they aggregate when temperature and/or salt concentration are increased. Here we describe the generation of an ELP fusion to a soluble streptavidin mutant that enables rapid purification of any <i>Strep</i>-tag II fusion protein of interest. This heterobifunctional protein takes advantage of the native tetrameric structure of streptavidin, leading to binding-induced multivalent crosslinking upon protein capture. The efficient biotin-mediated dissociation of the bound <i>Strep-</i>tag II fusion protein from the streptavidin-ELP capturing scaffold allows for mild elution conditions. We also show that this platform is particularly effective in the purification of a virus-like particle (VLP)-like E2 protein nanoparticle, likely because the high valency of the protein particle causes binding-induced crosslinking and precipitation. Considering the importance of VLP for gene therapy applications, we believe this is a particularly exciting advance. We demonstrated this feasibility by the efficient purification of a VLP-like E2 protein nanoparticle as a surrogate.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"121 12","pages":"3860-3868"},"PeriodicalIF":3.5,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}