A New Modeling Approach for Predicting the Growth of Filamentous Algae in Outdoor Algae-Based Wastewater Treatment Systems.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sulochana Pitawala, Peter J Scales, Gregory J O Martin
{"title":"A New Modeling Approach for Predicting the Growth of Filamentous Algae in Outdoor Algae-Based Wastewater Treatment Systems.","authors":"Sulochana Pitawala, Peter J Scales, Gregory J O Martin","doi":"10.1002/bit.28941","DOIUrl":null,"url":null,"abstract":"<p><p>Filamentous algae (FA) can form readily harvestable floating mats or attached turfs that facilitate their application in wastewater treatment systems. However, large-scale implementation is hindered by our inability to predict performance as a function of key operational parameters. A predictive mathematical model would be a valuable tool for designing efficient FA-based systems. Developing accurate models is challenging due to dynamic environmental conditions and the spatial complexities of FA cultures. In this work, a model was developed to mathematically describe the biomass productivity of static FA cultures (mats and turfs) in relation to the incident light intensity and temperature. The model was validated against published data to investigate the influence of time-dependent inhibition (inhibition from sustained light exposure) on productivity. When time-dependent inhibition was included in the model, predictions were within ~10% of experimental values, however, without including time-dependent inhibition there was a sixfold overestimation of biomass productivity. The model could also generate predictions of the effects of time-dependent inhibition during diurnal light fluctuations using experimentally determined rate constants. The model represents a powerful tool for optimizing the design and operational parameters in FA cultures that could be further expanded to incorporate the influence of nutrient and CO<sub>2</sub> availability.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28941","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Filamentous algae (FA) can form readily harvestable floating mats or attached turfs that facilitate their application in wastewater treatment systems. However, large-scale implementation is hindered by our inability to predict performance as a function of key operational parameters. A predictive mathematical model would be a valuable tool for designing efficient FA-based systems. Developing accurate models is challenging due to dynamic environmental conditions and the spatial complexities of FA cultures. In this work, a model was developed to mathematically describe the biomass productivity of static FA cultures (mats and turfs) in relation to the incident light intensity and temperature. The model was validated against published data to investigate the influence of time-dependent inhibition (inhibition from sustained light exposure) on productivity. When time-dependent inhibition was included in the model, predictions were within ~10% of experimental values, however, without including time-dependent inhibition there was a sixfold overestimation of biomass productivity. The model could also generate predictions of the effects of time-dependent inhibition during diurnal light fluctuations using experimentally determined rate constants. The model represents a powerful tool for optimizing the design and operational parameters in FA cultures that could be further expanded to incorporate the influence of nutrient and CO2 availability.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信