Jannik Richter, Qimin Wang, Ferdinand Lange, Phil Thiel, Nina Yilmaz, Dörte Solle, Xiaoying Zhuang, Sascha Beutel
{"title":"Machine Learning-Powered Optimization of a CHO Cell Cultivation Process.","authors":"Jannik Richter, Qimin Wang, Ferdinand Lange, Phil Thiel, Nina Yilmaz, Dörte Solle, Xiaoying Zhuang, Sascha Beutel","doi":"10.1002/bit.28943","DOIUrl":null,"url":null,"abstract":"<p><p>Chinese Hamster Ovary (CHO) cells are the most widely used cell lines to produce recombinant therapeutic proteins such as monoclonal antibodies (mAbs). However, the optimization of the CHO cell culture process is very complex and influenced by various factors. This study investigates the use of machine learning (ML) algorithms to optimize an established industrial CHO cell cultivation process. A ML algorithm in the form of an artificial neural network (ANN) was used and trained on datasets from historical and newly generated CHO cell cultivation runs. The algorithm was then used to find better cultivation conditions and improve cell productivity. The selected artificial intelligence (AI) tool was able to suggest optimized cultivation settings and new condition combinations, which promised both increased cell growth and increased mAb titers. After performing the validation experiments, it was shown that the ML algorithm was able to successfully optimize the cultivation process and significantly improve the antibody production. The best results showed an increase in final mAb titer up to 48%, demonstrating that the use of ML algorithms is a promising approach to optimize the productivity of bioprocesses like CHO cell cultivation processes clearly.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28943","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chinese Hamster Ovary (CHO) cells are the most widely used cell lines to produce recombinant therapeutic proteins such as monoclonal antibodies (mAbs). However, the optimization of the CHO cell culture process is very complex and influenced by various factors. This study investigates the use of machine learning (ML) algorithms to optimize an established industrial CHO cell cultivation process. A ML algorithm in the form of an artificial neural network (ANN) was used and trained on datasets from historical and newly generated CHO cell cultivation runs. The algorithm was then used to find better cultivation conditions and improve cell productivity. The selected artificial intelligence (AI) tool was able to suggest optimized cultivation settings and new condition combinations, which promised both increased cell growth and increased mAb titers. After performing the validation experiments, it was shown that the ML algorithm was able to successfully optimize the cultivation process and significantly improve the antibody production. The best results showed an increase in final mAb titer up to 48%, demonstrating that the use of ML algorithms is a promising approach to optimize the productivity of bioprocesses like CHO cell cultivation processes clearly.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.