Brain connectivityPub Date : 2024-09-01Epub Date: 2024-08-07DOI: 10.1089/brain.2024.0052
Roxane Hoyer, Steven Laureys
{"title":"The Interest and Usefulness of Resting State fMRI in Brain Connectivity Research.","authors":"Roxane Hoyer, Steven Laureys","doi":"10.1089/brain.2024.0052","DOIUrl":"10.1089/brain.2024.0052","url":null,"abstract":"","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"354-356"},"PeriodicalIF":2.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain connectivityPub Date : 2024-09-01DOI: 10.1089/brain.2024.59245.rfs2023
Liara Rizzi
{"title":"Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for <i>Brain Connectivity</i>.","authors":"Liara Rizzi","doi":"10.1089/brain.2024.59245.rfs2023","DOIUrl":"https://doi.org/10.1089/brain.2024.59245.rfs2023","url":null,"abstract":"","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":"14 7","pages":"351"},"PeriodicalIF":2.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain connectivityPub Date : 2024-08-01Epub Date: 2024-07-10DOI: 10.1089/brain.2023.0080
Hrishikesh Kambli, Alberto Santamaria-Pang, Ivan Tarapov, Elham Beheshtian, Licia P Luna, Haris Sair, Craig Jones
{"title":"Atlas-Based Labeling of Resting-State fMRI.","authors":"Hrishikesh Kambli, Alberto Santamaria-Pang, Ivan Tarapov, Elham Beheshtian, Licia P Luna, Haris Sair, Craig Jones","doi":"10.1089/brain.2023.0080","DOIUrl":"10.1089/brain.2023.0080","url":null,"abstract":"<p><p><b><i>Background:</i></b> Functional magnetic resonance imaging (fMRI) has the potential to provide noninvasive functional mapping of the brain with high spatial and temporal resolution. However, fMRI independent components (ICs) must be manually inspected, selected, and interpreted, requiring time and expertise. We propose a novel approach for automated labeling of fMRI ICs by establishing their characteristic spatio-functional relationship. <b><i>Methods:</i></b> The approach identifies 9 resting-state networks and 45 ICs and generates a functional activation feature map that quantifies the spatial distribution, relative to an anatomical labeled atlas, of the z-scores of each IC across a cohort of 176 subjects. The cosine-similarity metric was used to classify unlabeled ICs based on the similarity to the spatial distribution of activation with the pregenerated feature map. The approach was tested on three fMRI datasets from the 1000 functional connectome projects, consisting of 280 subjects, that were not included in feature map generation. <b><i>Results:</i></b> The results demonstrate the effectiveness of the approach in classifying ICs based on their spatial features with an accuracy of better than 95%. <b><i>Conclusions:</i></b> The approach significantly reduces expert time and computation time required for labeling ICs, while improving reliability and accuracy. The spatio-functional relationship also provides an explainable relationship between the functional activation and the anatomically defined regions.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"319-326"},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Disrupted Dynamic Network Attribution Associated with Gait Disorder in Cerebral Small Vessel Disease.","authors":"Xia Zhou, Chaojuan Huang, Zhiwei Li, Mingxu Li, Wenwen Yin, Mengmeng Ren, Yating Tang, Jiabin Yin, Wenhui Zheng, Chao Zhang, Xueying Li, Ke Wan, Xiaoqun Zhu, Zhongwu Sun","doi":"10.1089/brain.2023.0092","DOIUrl":"10.1089/brain.2023.0092","url":null,"abstract":"<p><p><b><i>Background and Aims:</i></b> Previous research has focused on static functional connectivity in gait disorders caused by cerebral small vessel disease (CSVD), neglecting dynamic functional connections and network attribution. This study aims to investigate alterations in dynamic functional network connectivity (dFNC) and topological organization variance in CSVD-related gait disorders. <b><i>Methods:</i></b> A total of 85 patients with CSVD, including 41 patients with CSVD and gait disorders (CSVD-GD), 44 patients with CSVD and non-gait disorders (CSVD-NGD), and 32 healthy controls (HC), were enrolled in this study. Five networks composed of 10 independent components were selected using independent component analysis. Sliding time window and <i>k</i>-means clustering methods were used for dFNC analysis. The relationship between alterations in the dFNC properties and gait metrics was further assessed. <b><i>Results:</i></b> Three reproducible dFNC states were determined (State 1: sparsely connected, State 2: intermediate pattern, and State 3: strongly connected). CSVD-GD showed significantly higher fractional windows (FW) and mean dwell time (MDT) in State 1 compared with CSVD-NGD. Higher local efficiency variance was observed in the CSVD-GD group compared with HC, but no differences were found in the global efficiency comparison. Both the FW and MDT in State 1 were negatively correlated with gait speed and step length, and the relationship between MDT of State 1 and gait speed was mediated by overall cognition, information processing speed, and executive function. <b><i>Conclusions:</i></b> Our study uncovered abnormal dFNC indicators and variations in topological organization in CSVD-GD, offering potential early prediction indicators and freshening insights into the underlying pathogenesis of gait disturbances in CSVD.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"327-339"},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain connectivityPub Date : 2024-08-01Epub Date: 2024-07-03DOI: 10.1089/brain.2023.0066
Shweta Prasad, Archith Rajan, Madhura Ingalhalikar, Rose Dawn Bharath, Jitender Saini, Pramod Kumar Pal
{"title":"Probabilistic Tractography-Based Tremor Network Connectivity in Tremor Dominant Parkinson's Disease and Essential Tremor plus.","authors":"Shweta Prasad, Archith Rajan, Madhura Ingalhalikar, Rose Dawn Bharath, Jitender Saini, Pramod Kumar Pal","doi":"10.1089/brain.2023.0066","DOIUrl":"10.1089/brain.2023.0066","url":null,"abstract":"<p><p><b><i>Background:</i></b> The basal ganglia-thalamocortical (BGTC) and cerebello-thalamocortical (CTC) networks are implicated in tremor genesis; however, exact contributions across disorders have not been studied. <b><i>Objective:</i></b> Evaluate the structural connectivity of BGTC and CTC in tremor-dominant Parkinson's disease (TDPD) and essential tremor plus (ETP) with the aid of probabilistic tractography and graph theory analysis. <b><i>Methods:</i></b> Structural connectomes of the BGTC and CTC were generated by probabilistic tractography for TDPD (<i>n</i> = 25), ETP (ET with rest tremor, <i>n</i> = 25), and healthy control (HC, <i>n</i> = 22). The Brain Connectivity Toolbox was used for computing standard topological graph measures of segregation, integration, and centrality. Tremor severity was ascertained using the Fahn-Tolosa-Marin tremor rating scale (FTMRS). <b><i>Results:</i></b> There was no difference in total FTMRS scores. Compared with HC, TDPD had a lower global efficiency and characteristic path length. Abnormality in segregation, integration, and centrality of bilateral putamen, globus pallidus externa (GPe), and GP interna (GPi), with reduction of centrality of right caudate and cerebellar lobule 8, was observed. ETP showed reduction in segregation and integration of right GPe and GPi, ventrolateral posterior nucleus, and centrality of right putamen, compared with HC. Differences between TDPD and ETP were a reduction of strength of the right putamen, and lower clustering coefficient, local efficiency, and strength of the left GPi in TDPD. <b><i>Conclusions:</i></b> Contrary to expectations, TDPD and ETP may not be significantly different with regard to tremor pathogenesis, with definite overlaps. There may be fundamental similarities in network disruption across different tremor disorders with the same tremor activation patterns, along with disease-specific changes.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"340-350"},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain connectivityPub Date : 2024-08-01Epub Date: 2024-07-30DOI: 10.1089/brain.2024.0047
Jennifer L Whitwell, Steven Laureys
{"title":"Advances in Understanding Brain Connectivity.","authors":"Jennifer L Whitwell, Steven Laureys","doi":"10.1089/brain.2024.0047","DOIUrl":"10.1089/brain.2024.0047","url":null,"abstract":"","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"305-306"},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain connectivityPub Date : 2024-08-01Epub Date: 2024-07-03DOI: 10.1089/brain.2023.0072
Clara G Zundel, Samantha Ely, Cole Brokamp, Jeffrey R Strawn, Tanja Jovanovic, Patrick Ryan, Hilary A Marusak
{"title":"Particulate Matter Exposure and Default Mode Network Equilibrium During Early Adolescence.","authors":"Clara G Zundel, Samantha Ely, Cole Brokamp, Jeffrey R Strawn, Tanja Jovanovic, Patrick Ryan, Hilary A Marusak","doi":"10.1089/brain.2023.0072","DOIUrl":"10.1089/brain.2023.0072","url":null,"abstract":"<p><p><b><i>Background:</i></b> Air pollution exposure has been associated with adverse cognitive and mental health outcomes in children, adolescents, and adults, although youth may be particularly susceptible given ongoing brain development. However, the neurodevelopmental mechanisms underlying the associations among air pollution, cognition, and mental health remain unclear. We examined the impact of particulate matter (PM<sub>2.5</sub>) on resting-state functional connectivity (rsFC) of the default mode network (DMN) and three key attention networks: dorsal attention, ventral attention, and cingulo-opercular. <b><i>Methods:</i></b> Longitudinal changes in rsFC within/between networks were assessed from baseline (9-10 years) to the 2-year follow-up (11-12 years) in 10,072 youth (<i>M ± SD</i> = 9.93 + 0.63 years; 49% female) from the Adolescent Brain Cognitive Development (ABCD<sup>®</sup>) study. Annual ambient PM<sub>2.5</sub> concentrations from the 2016 calendar year were estimated using hybrid ensemble spatiotemporal models. RsFC was estimated using functional neuroimaging. Linear mixed models were used to test associations between PM<sub>2.5</sub> and change in rsFC over time while adjusting for relevant covariates (e.g., age, sex, race/ethnicity, parental education, and family income) and other air pollutants (O<sub>3</sub>, NO<sub>2</sub>). <b><i>Results:</i></b> A PM<sub>2.5</sub> × time interaction was significant for within-network rsFC of the DMN such that higher PM<sub>2.5</sub> concentrations were associated with a smaller increase in rsFC over time. Further, significant PM<sub>2.5</sub> × time interactions were observed for between-network rsFC of the DMN and all three attention networks, with varied directionality. <b><i>Conclusion:</i></b> PM<sub>2.5</sub> exposure was associated with alterations in the development and equilibrium of the DMN-a network implicated in self-referential processing-and anticorrelated attention networks, which may impact trajectories of cognitive and mental health symptoms across adolescence.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"307-318"},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain connectivityPub Date : 2024-06-01Epub Date: 2024-06-07DOI: 10.1089/brain.2023.0083
John S Hutton, Jonathan Dudley, Thomas DeWitt, Tzipi Horowitz-Kraus
{"title":"Neural Signature of Rhyming Ability During Story Listening in Preschool-Age Children.","authors":"John S Hutton, Jonathan Dudley, Thomas DeWitt, Tzipi Horowitz-Kraus","doi":"10.1089/brain.2023.0083","DOIUrl":"10.1089/brain.2023.0083","url":null,"abstract":"<p><p><b><i>Purpose:</i></b> Rhyming is a phonological skill that typically emerges in the preschool-age range. Prosody/rhythm processing involves right-lateralized temporal cortex, yet the neural basis of rhyming ability in young children is unclear. The study objective was to use functional magnetic resonance imaging (fMRI) to quantify neural correlates of rhyming abilities in preschool-age children. <b><i>Method:</i></b> Healthy pre-kindergarten child-parent dyads were recruited for a study visit including MRI and the Preschool and Primary Inventory of Phonological Awareness (PIPA) rhyme subtest. MRI included an fMRI task where the child listened to a rhymed and unrhymed story without visual stimuli. fMRI data were processed using the CONN functional connectivity (FC) toolbox, with FC computed between 132 regions of interest (ROI) across the brain. Associations between PIPA score and FC during the rhymed versus unrhymed story were compared accounting for age, sex, and maternal education. <b><i>Results:</i></b> In total, 45 children completed MRI (age 54 ± 8 months, 37-63; 19M 26F). Median maternal education was college graduate. FC between ROIs in posterior default mode (imagery) and right fronto-parietal (executive function) networks was more strongly positively associated with PIPA score during the rhymed compared with the unrhymed story [<i>F</i>(2,39) = 10.95, p-FDR = 0.043], as was FC between ROIs in right-sided language (prosody) and dorsal attention networks [<i>F</i>(2,39) = 9.85, p-FDR = 0.044]. <b><i>Conclusions:</i></b> Preschool-age children with better rhyming abilities had stronger FC between ROIs supporting attention and prosody and also between ROIs supporting executive function and imagery, suggesting rhyme as a catalyst for attention, visualization, and comprehension. These represent novel neural biomarkers of nascent phonological skills.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"294-303"},"PeriodicalIF":2.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140956196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain connectivityPub Date : 2024-06-01Epub Date: 2024-06-11DOI: 10.1089/brain.2024.0036
Steven Laureys
{"title":"Brain Connectivity: Embracing the Nexus of Mind and Matter.","authors":"Steven Laureys","doi":"10.1089/brain.2024.0036","DOIUrl":"10.1089/brain.2024.0036","url":null,"abstract":"","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"261-262"},"PeriodicalIF":2.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain connectivityPub Date : 2024-06-01Epub Date: 2024-06-11DOI: 10.1089/brain.2024.0037
Steven Laureys, Marc Raichle, Karl Friston, Susan Whitfield-Gabrieli, Jennifer Whitwell, Vince Calhoun, Linda Douw, Melanie Boly
{"title":"A Roundtable Discussion on Brain Connectivity.","authors":"Steven Laureys, Marc Raichle, Karl Friston, Susan Whitfield-Gabrieli, Jennifer Whitwell, Vince Calhoun, Linda Douw, Melanie Boly","doi":"10.1089/brain.2024.0037","DOIUrl":"10.1089/brain.2024.0037","url":null,"abstract":"","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"263-273"},"PeriodicalIF":2.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}