The Effect of Modular Degeneracy on Neuroimaging Data.

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Elisabeth C Caparelli, Hong Gu, Yihong Yang
{"title":"The Effect of Modular Degeneracy on Neuroimaging Data.","authors":"Elisabeth C Caparelli, Hong Gu, Yihong Yang","doi":"10.1089/brain.2023.0090","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> The concept of community structure, based on modularity, is widely used to address many systems-level queries. However, its algorithm, based on the maximization of the modularity index Q, suffers from degeneracy problem, which yields a set of different possible solutions. <b><i>Methods:</i></b> In this work, we explored the degeneracy effect of modularity principle on resting-state functional magnetic resonance imaging (rsfMRI) data, when it is used to parcellate the cingulate cortex using data from the Human Connectome Project. We proposed a new iterative approach to address this limitation. <b><i>Results:</i></b> Our results show that current modularity approaches furnish a variety of different solutions, when these algorithms are repeated, leading to different number of subdivisions for the cingulate cortex. Our new proposed method, however, overcomes this limitation and generates more stable solution for the final partition. <b><i>Conclusion:</i></b> With this new method, we were able to mitigate the degeneracy problem and offer a tool to use modularity in a more reliable manner, when applying it to rsfMRI data.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2023.0090","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The concept of community structure, based on modularity, is widely used to address many systems-level queries. However, its algorithm, based on the maximization of the modularity index Q, suffers from degeneracy problem, which yields a set of different possible solutions. Methods: In this work, we explored the degeneracy effect of modularity principle on resting-state functional magnetic resonance imaging (rsfMRI) data, when it is used to parcellate the cingulate cortex using data from the Human Connectome Project. We proposed a new iterative approach to address this limitation. Results: Our results show that current modularity approaches furnish a variety of different solutions, when these algorithms are repeated, leading to different number of subdivisions for the cingulate cortex. Our new proposed method, however, overcomes this limitation and generates more stable solution for the final partition. Conclusion: With this new method, we were able to mitigate the degeneracy problem and offer a tool to use modularity in a more reliable manner, when applying it to rsfMRI data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain connectivity
Brain connectivity Neuroscience-General Neuroscience
CiteScore
4.80
自引率
0.00%
发文量
80
期刊介绍: Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic. This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信