Brain connectivityPub Date : 2024-06-01Epub Date: 2024-06-07DOI: 10.1089/brain.2023.0083
John S Hutton, Jonathan Dudley, Thomas DeWitt, Tzipi Horowitz-Kraus
{"title":"Neural Signature of Rhyming Ability During Story Listening in Preschool-Age Children.","authors":"John S Hutton, Jonathan Dudley, Thomas DeWitt, Tzipi Horowitz-Kraus","doi":"10.1089/brain.2023.0083","DOIUrl":"10.1089/brain.2023.0083","url":null,"abstract":"<p><p><b><i>Purpose:</i></b> Rhyming is a phonological skill that typically emerges in the preschool-age range. Prosody/rhythm processing involves right-lateralized temporal cortex, yet the neural basis of rhyming ability in young children is unclear. The study objective was to use functional magnetic resonance imaging (fMRI) to quantify neural correlates of rhyming abilities in preschool-age children. <b><i>Method:</i></b> Healthy pre-kindergarten child-parent dyads were recruited for a study visit including MRI and the Preschool and Primary Inventory of Phonological Awareness (PIPA) rhyme subtest. MRI included an fMRI task where the child listened to a rhymed and unrhymed story without visual stimuli. fMRI data were processed using the CONN functional connectivity (FC) toolbox, with FC computed between 132 regions of interest (ROI) across the brain. Associations between PIPA score and FC during the rhymed versus unrhymed story were compared accounting for age, sex, and maternal education. <b><i>Results:</i></b> In total, 45 children completed MRI (age 54 ± 8 months, 37-63; 19M 26F). Median maternal education was college graduate. FC between ROIs in posterior default mode (imagery) and right fronto-parietal (executive function) networks was more strongly positively associated with PIPA score during the rhymed compared with the unrhymed story [<i>F</i>(2,39) = 10.95, p-FDR = 0.043], as was FC between ROIs in right-sided language (prosody) and dorsal attention networks [<i>F</i>(2,39) = 9.85, p-FDR = 0.044]. <b><i>Conclusions:</i></b> Preschool-age children with better rhyming abilities had stronger FC between ROIs supporting attention and prosody and also between ROIs supporting executive function and imagery, suggesting rhyme as a catalyst for attention, visualization, and comprehension. These represent novel neural biomarkers of nascent phonological skills.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"294-303"},"PeriodicalIF":2.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140956196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain connectivityPub Date : 2024-06-01Epub Date: 2024-06-11DOI: 10.1089/brain.2024.0036
Steven Laureys
{"title":"Brain Connectivity: Embracing the Nexus of Mind and Matter.","authors":"Steven Laureys","doi":"10.1089/brain.2024.0036","DOIUrl":"10.1089/brain.2024.0036","url":null,"abstract":"","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"261-262"},"PeriodicalIF":2.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain connectivityPub Date : 2024-06-01Epub Date: 2024-06-11DOI: 10.1089/brain.2024.0037
Steven Laureys, Marc Raichle, Karl Friston, Susan Whitfield-Gabrieli, Jennifer Whitwell, Vince Calhoun, Linda Douw, Melanie Boly
{"title":"A Roundtable Discussion on Brain Connectivity.","authors":"Steven Laureys, Marc Raichle, Karl Friston, Susan Whitfield-Gabrieli, Jennifer Whitwell, Vince Calhoun, Linda Douw, Melanie Boly","doi":"10.1089/brain.2024.0037","DOIUrl":"10.1089/brain.2024.0037","url":null,"abstract":"","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"263-273"},"PeriodicalIF":2.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Personal Income Performance Correlates with Brain Structural Network Modularity but Not Intelligence Quotient.","authors":"Fanny Nusbaum, Salem Hannoun, Berardino Barile, Ilaria Suprano, Sabine Mouchet, Dominique Sappey-Marinier","doi":"10.1089/brain.2023.0077","DOIUrl":"10.1089/brain.2023.0077","url":null,"abstract":"<p><p><b><i>Introduction:</i></b> This study aims to use diffusion tensor imaging (DTI) in conjunction with brain graph techniques to define brain structural connectivity and investigate its association with personal income (PI) in individuals of various ages and intelligence quotients (IQ). <b><i>Methods:</i></b> MRI examinations were performed on 55 male subjects (mean age: 40.1 ± 9.4 years). Graph data and metrics were generated, and DTI images were analyzed using tract-based spatial statistics (TBSS). All subjects underwent the Wechsler Adult Intelligence Scale for a reliable estimation of the full-scale IQ (FSIQ), which includes verbal comprehension index, perceptual reasoning index, working memory index, and processing speed index. The performance score was defined as the monthly PI normalized by the age of the subject. <b><i>Results:</i></b> The analysis of global graph metrics showed that modularity correlated positively with performance score (<i>p</i> = 0.003) and negatively with FSIQ (<i>p</i> = 0.04) and processing speed index (<i>p</i> = 0.005). No significant correlations were found between IQ indices and performance scores. Regional analysis of graph metrics showed modularity differences between right and left networks in sub-cortical (<i>p</i> = 0.001) and frontal (<i>p</i> = 0.044) networks. TBSS analysis showed greater axial and mean diffusivities in the high-performance group in correlation with their modular brain organization. <b><i>Conclusion:</i></b> This study showed that PI performance is strongly correlated with a modular organization of brain structural connectivity, which implies short and rapid networks, providing automatic and unconscious brain processing. Additionally, the lack of correlation between performance and IQ suggests a reduced role of academic reasoning skills in performance to the advantage of high uncertainty decision-making networks.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"284-293"},"PeriodicalIF":2.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain connectivityPub Date : 2024-05-01Epub Date: 2024-04-24DOI: 10.1089/brain.2023.0063
Sébastien Dam, Jean-Marie Batail, Gabriel H Robert, Dominique Drapier, Pierre Maurel, Julie Coloigner
{"title":"Structural Brain Connectivity and Treatment Improvement in Mood Disorder.","authors":"Sébastien Dam, Jean-Marie Batail, Gabriel H Robert, Dominique Drapier, Pierre Maurel, Julie Coloigner","doi":"10.1089/brain.2023.0063","DOIUrl":"10.1089/brain.2023.0063","url":null,"abstract":"<p><p><b><i>Background:</i></b> The treatment of depressive episodes is well established, with clearly demonstrated effectiveness of antidepressants and psychotherapies. However, more than one-third of depressed patients do not respond to treatment. Identifying the brain structural basis of treatment-resistant depression could prevent useless pharmacological prescriptions, adverse events, and lost therapeutic opportunities. <b><i>Methods:</i></b> Using diffusion magnetic resonance imaging, we performed structural connectivity analyses on a cohort of 154 patients with mood disorder (MD) and 77 sex- and age-matched healthy control (HC) participants. To assess illness improvement, the patients with MD went through two clinical interviews at baseline and at 6-month follow-up and were classified based on the Clinical Global Impression-Improvement score into improved or not-improved (NI). First, the threshold-free network-based statistics (NBS) was conducted to measure the differences in regional network architecture. Second, nonparametric permutations tests were performed on topological metrics based on graph theory to examine differences in connectome organization. <b><i>Results:</i></b> The threshold-free NBS revealed impaired connections involving regions of the basal ganglia in patients with MD compared with HC. Significant increase of local efficiency and clustering coefficient was found in the lingual gyrus, insula, and amygdala in the MD group. Compared with the NI, the improved displayed significantly reduced network integration and segregation, predominately in the default-mode regions, including the precuneus, middle temporal lobe, and rostral anterior cingulate. <b><i>Conclusions:</i></b> This study highlights the involvement of regions belonging to the basal ganglia, the fronto-limbic network, and the default mode network, leading to a better understanding of MD disease and its unfavorable outcome.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"239-251"},"PeriodicalIF":3.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140292836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain connectivityPub Date : 2024-05-01Epub Date: 2024-04-08DOI: 10.1089/brain.2023.0082
Chen-Fang Chung, Jules R Dugré, Stéphane Potvin
{"title":"Dysconnectivity of the Nucleus Accumbens and Amygdala in Youths with Thought Problems: A Dimensional Approach.","authors":"Chen-Fang Chung, Jules R Dugré, Stéphane Potvin","doi":"10.1089/brain.2023.0082","DOIUrl":"10.1089/brain.2023.0082","url":null,"abstract":"<p><p><b><i>Background:</i></b> Youths with thought problems (TP) are at risk to develop psychosis and obsessive-compulsive disorder (OCD). Yet, the pathophysiological mechanisms underpinning TP are still unclear. Functional magnetic resonance imaging (fMRI) studies have shown that striatal and limbic alterations are associated with psychosis-like and obsessive-like symptoms in individuals at clinical risk for psychosis, schizophrenia, and OCD. More specifically, nucleus accumbens (NAcc) and amygdala are mainly involved in these associations. The current study aims to investigate the neural correlates of TP in youth populations using a dimensional approach and explore potential cognitive functions and neurotransmitters associated with it. <b><i>Methods:</i></b> Seed-to-voxels functional connectivity analyses using NAcc and amygdala as regions-of-interest were conducted with resting-state fMRI data obtained from 1360 young individuals, and potential confounders related to TP such as anxiety and cognitive functions were included as covariates in multiple regression analyses. Replicability was tested in using an adult cohort. In addition, functional decoding and neurochemical correlation analyses were performed to identify the associated cognitive functions and neurotransmitters. <b><i>Results:</i></b> The altered functional connectivities between the right NAcc and posterior parahippocampal gyrus, between the right amygdala and lateral prefrontal cortex, and between the left amygdala and the secondary visual area were the best predictors of TP in multiple regression model. These functional connections are mainly involved in social cognition and reward processing. <b><i>Conclusions:</i></b> The results show that alterations in the functional connectivity of the NAcc and the amygdala in neural pathways involved in social cognition and reward processing are associated with severity of TP in youths.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"226-238"},"PeriodicalIF":3.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain connectivityPub Date : 2024-05-01Epub Date: 2024-04-16DOI: 10.1089/brain.2023.0081
Andreas Liampas, Vasilis-Spyridon Tseriotis, Artemios Artemiadis, Panagiotis Zis, Chrysanthi Argyropoulou, Nikolaos Grigoriadis, Georgios M Hadjigeorgiou, George Vavougyios
{"title":"Adult Neoneurogenesis and Oligodendrogenesis in Multiple Sclerosis: A Systematic Review of Human and Animal Studies.","authors":"Andreas Liampas, Vasilis-Spyridon Tseriotis, Artemios Artemiadis, Panagiotis Zis, Chrysanthi Argyropoulou, Nikolaos Grigoriadis, Georgios M Hadjigeorgiou, George Vavougyios","doi":"10.1089/brain.2023.0081","DOIUrl":"10.1089/brain.2023.0081","url":null,"abstract":"<p><p><b><i>Introduction:</i></b> The subventricular zone promotes remyelination through activation differentiation of oligodendroglial precursor cells (OPCs) and neural stem cells (NSCs) into mature oligodendrocytes and thus in the adult brain. In multiple sclerosis (MS) this regenerative capability is halted resulting in neurodegeneration. We aimed to systematically search and synthesize evidence on mechanisms and phenomena associated with subventricular zone (SVZ) dysfunction in MS. <b><i>Materials and Methods:</i></b> Our systematic review was reported according to the PRISMA-ScR statement. MEDLINE, SCOPUS, ProQuest, and Google Scholar were searched using the terms \"subventricular zone\" and \"multiple sclerosis,\" including English-written <i>in vivo</i> and postmortem studies. <b><i>Results:</i></b> Twenty studies were included. Thirteen studies on models of experimental autoimmune encephalomyelitis (EAE) reported among others strong stathmin immunoreactivity in the SVZ of EAE models, the role of MOG immunization in neurogenesis impairment, the effect of parenchymal OPCs and NSCs in myelin repair, and the importance of ependymal cells (E1/E2) and ciliated B1 cells in SVZ stem cell signaling. CXCR4 signaling and transcriptional profiles of SVZ microglia, Gli1 pathway, and galactin-3 were also explored. Studies in humans demonstrated microstructural SVZ damage in progressive MS and the persistence of black holes near the SVZ, whereas postmortem confirmed the generation of polysialic acid-neural cell adhesion molecule and NG2-positive progenitors through SVZ activation, SVZ stathmin immunoreactivity, Shh pathway, and Gal-3 upregulation. <b><i>Discussion:</i></b> Oligodendrogenesis defects translate to reduced remyelination, a hallmark of MS that determines its end-phenotype and disease course. <b><i>Conclusion:</i></b> The role of inflammation and subsequent SVZ microenvironment disruption is evident in MS pathology.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"209-225"},"PeriodicalIF":3.4,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140292835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain connectivityPub Date : 2024-04-01Epub Date: 2024-03-25DOI: 10.1089/brain.2023.0064
Zaeem Hadi, Mohammad Mahmud, Barry M Seemungal
{"title":"Brain Mechanisms Explaining Postural Imbalance in Traumatic Brain Injury: A Systematic Review.","authors":"Zaeem Hadi, Mohammad Mahmud, Barry M Seemungal","doi":"10.1089/brain.2023.0064","DOIUrl":"10.1089/brain.2023.0064","url":null,"abstract":"<p><p><b><i>Introduction:</i></b> Persisting imbalance and falls in community-dwelling traumatic brain injury (TBI) survivors are linked to reduced long-term survival. However, a detailed understanding of the impact of TBI upon the brain mechanisms mediating imbalance is lacking. To understand the state of the art concerning the brain mechanisms mediating imbalance in TBI, we performed a systematic review of the literature. <b><i>Methods:</i></b> PubMed, Web of Science, and Scopus were searched and peer-reviewed research articles in humans, with any severity of TBI (mild, moderate, severe, or concussion), which linked a postural balance assessment (objective or subjective) with brain imaging (through computed tomography, T1-weighted imaging, functional magnetic resonance imaging [fMRI], resting-state fMRI, diffusion tensor imaging, magnetic resonance spectroscopy, single-photon emission computed tomography, electroencephalography, magnetoencephalography, near-infrared spectroscopy, and evoked potentials) were included. Out of 1940 articles, 60 were retrieved and screened, and 25 articles fulfilling inclusion criteria were included. <b><i>Results:</i></b> The most consistent finding was the link between imbalance and the cerebellum; however, the regions within the cerebellum were inconsistent. <b><i>Discussion:</i></b> The lack of consistent findings could reflect that imbalance in TBI is due to a widespread brain network dysfunction, as opposed to focal cortical damage. The inconsistency in the reported findings may also be attributed to heterogeneity of methodology, including data analytical techniques, small sample sizes, and choice of control groups. Future studies should include a detailed clinical phenotyping of vestibular function in TBI patients to account for the confounding effect of peripheral vestibular disorders on imbalance and brain imaging.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"144-177"},"PeriodicalIF":2.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain connectivityPub Date : 2024-04-01Epub Date: 2024-03-08DOI: 10.1089/brain.2023.0041
Surya Das, Subha D Puthankattil
{"title":"Electroencephalogram-Based Metastability in Mild Cognitive Impairment Alzheimer's Disease.","authors":"Surya Das, Subha D Puthankattil","doi":"10.1089/brain.2023.0041","DOIUrl":"10.1089/brain.2023.0041","url":null,"abstract":"<p><p><b><i>Background:</i></b> In this study, we analyze metastability, a feature of brain dynamics in subjects experiencing mild cognitive impairment Alzheimer's disease (MCI-AD) under eyes open (EO) and eyes closed (EC) conditions. Alzheimer's disease (AD) is a critically prolonged brain disorder that interrupts neural synchronization and desynchronization. Thus, studying metastability under EO and EC conditions would help in understanding the cortical dynamics and its impact in early-stage AD. <b><i>Methods:</i></b> Metastability is investigated using three methods namely frequency variance analysis, Kuramoto order parameter, and through meta-state activation patterns. Frequency variance estimated from 21 electroencephalogram (EEG) channels was clustered into three regions namely anterior, central, and posterior to study the regional metastability analysis. Global metastability was assessed from Kuramoto order parameter and meta-state activation patterns by collating the 21 EEG channels. <b><i>Results:</i></b> Reduction in metastability was observed in central regions of MCI-AD subjects through the study of frequency variance analysis. There was a marked reduction in global metastability in the patient group under the resting EO condition. Reduction in meta-state activation properties such as temporal activation sequence complexity, modularity, and leap size in MCI-AD condition under the EO condition indicates an overall reduction in brain flexibility. <b><i>Conclusion:</i></b> Taken together, the study infers an underlying structural change in neuronal dynamics influencing the reduction of metastability under the MCI-AD condition. The study further revealed that this reduction in metastability is more pronounced in the EO condition.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"198-207"},"PeriodicalIF":3.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71420699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reduced White Matter Fiber Density in Patients with Multiple Sclerosis.","authors":"Zeinab Gharaylou, Fatemeh Shahbodaghy, Pirhossein Kolivand, Maryam Kolivand, Fatemeh Azizzadeh, Masoumeh Rostampour","doi":"10.1089/brain.2023.0068","DOIUrl":"10.1089/brain.2023.0068","url":null,"abstract":"<p><p><b><i>Introduction:</i></b> Improved understanding of multiple sclerosis (MS) symptomatology, disease mechanisms, and clinical effectiveness can be achieved by investigating microstructural damage. The aim was to gain deeper insights into changes in white matter (WM) tracts in MS patients. <b><i>Methods:</i></b> Diffusion magnetic resonance imaging-based tractography was utilized to segment WM tracts into regions of interest for further quantitative analysis. However, tractography is susceptible to false-positive findings, reducing its specificity and clinical feasibility. To address these limitations, the Convex Optimization Modeling for Microstructure Informed Tractography (COMMIT) technique was used. COMMIT was used to derive measures of intracellular compartment (IC) and isotropic compartments from multishell diffusion data of 40 healthy controls (HCs) and 40 MS patients. <b><i>Results:</i></b> The analysis revealed a widespread pattern of significantly decreased IC values in MS patients compared with HCs across 61,581 voxels (<i>p</i><sub>FWE</sub> < 0.05, threshold-free cluster enhancement [TFCE] corrected). Similar WM structures studied using the fractional anisotropy (FA) value also showed a reduction in FA among MS patients compared with HCs across 57,304 voxels (<i>p</i><sub>FWE</sub> < 0.05, TFCE corrected). Out of the 61,581 voxels exhibiting lower IC, a substantial overlap of 47,251 voxels (76.72%) also demonstrated lower FA in MS patients compared with HCs. <b><i>Discussion:</i></b> The data suggested that lower IC values contributed to the explanation of FA reductions. In addition, IC showed promising potential for evaluating microstructural abnormalities in WM in MS, potentially being more sensitive than the frequently used FA value.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"172-181"},"PeriodicalIF":3.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139671297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}