Stephania Assimopoulos, Shaun Warrington, Katherine L Bryant, Stefan Pszczolkowski, Saad Jbabdi, Rogier B Mars, Stamatios N Sotiropoulos
{"title":"Generalising XTRACT tractography protocols across common macaque brain templates.","authors":"Stephania Assimopoulos, Shaun Warrington, Katherine L Bryant, Stefan Pszczolkowski, Saad Jbabdi, Rogier B Mars, Stamatios N Sotiropoulos","doi":"10.1007/s00429-024-02760-0","DOIUrl":"10.1007/s00429-024-02760-0","url":null,"abstract":"<p><p>Non-human primates are extensively used in neuroscience research as models of the human brain, with the rhesus macaque being a prominent example. We have previously introduced a set of tractography protocols (XTRACT) for reconstructing 42 corresponding white matter (WM) bundles in the human and the macaque brain and have shown cross-species comparisons using such bundles as WM landmarks. Our original XTRACT protocols were developed using the F99 macaque brain template. However, additional macaque template brains are becoming increasingly common. Here, we generalise the XTRACT tractography protocol definitions across five macaque brain templates, including the F99, D99, INIA, Yerkes and NMT. We demonstrate equivalence of such protocols in two ways: (a) Firstly by comparing the bodies of the tracts derived using protocols defined across the different templates considered, (b) Secondly by comparing the projection patterns of the reconstructed tracts across the different templates in two cross-species (human-macaque) comparison tasks. The results confirm similarity of all predictions regardless of the macaque brain template used, providing direct evidence for the generalisability of these tractography protocols across the five considered templates.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1873-1888"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139929972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andreas N Glud, Hamed Zaer, Dariusz Orlowski, Mette Slot Nielsen, Jens Christian H Sørensen, Carsten R Bjarkam
{"title":"Anatomy and connectivity of the Göttingen minipig subgenual cortex (Brodmann area 25 homologue).","authors":"Andreas N Glud, Hamed Zaer, Dariusz Orlowski, Mette Slot Nielsen, Jens Christian H Sørensen, Carsten R Bjarkam","doi":"10.1007/s00429-024-02855-8","DOIUrl":"10.1007/s00429-024-02855-8","url":null,"abstract":"<p><strong>Background: </strong>The subgenual gyrus is a promising target for deep brain stimulation (DBS) against depression. However, to optimize this treatment modality, we need translational animal models.</p><p><strong>Aim: </strong>To describe the anatomy and connectivity of the Göttingen minipig subgenual area (sgC).</p><p><strong>Materials and methods: </strong>The frontal pole of 5 minipigs was cryosectioned into 40 μm coronal and horizontal sections and stained with Nissl and NeuN-immunohistochemistry to visualize cytoarchitecture and cortical lamination. Eight animals were unilaterally stereotaxically injected in the sgC with anterograde (BDA) and retrograde (FluoroGold) tracers to reveal the sgC connectivity.</p><p><strong>Results: </strong>In homology with human nomenclature (Brodmann 1909), the minipig sgC can be subdivided into three distinct areas named area 25 (BA25), area 33 (BA33), and indusium griseum (IG). BA25 is a thin agranular cortex, approximately 1 mm thick. Characteristically, perpendicular to the pial surface, cell-poor cortical columns separate the otherwise cell-rich cortex of layer II, III and V. In layer V the cells are of similar size as seen in layer III, while layer VI contains more widely dispersed neurons. BA33 is less differentiated than BA25. Accordingly, the cortex is thinner and displays a complete lack of laminar differentiation due to diffusely arranged small, lightly stained neurons. It abuts the IG, which is a neuron-dense band of heavily stained small neurons separating BA33 directly from the corpus callosum and the posteriorly located septal nuclear area. Due to the limited area size and nearby location to the lateral ventricle and longitudinal cerebral fissure, only 3/8 animals received sgC injections with an antero- and retrograde tracer mixture. Retrograde tracing was seen primarily to the neighbouring ipsilateral ventral- and mPFC areas with some contralateral labelling as well. Prominent projections were furthermore observed from the ipsilateral insula, the medial aspect of the amygdala and the hippocampal formation, diencephalon and the brainstem ventral tegmental area. Anterograde tracing revealed prominent projections to the neighbouring medial prefrontal, mPFC and cingulate cortex, while moderate staining was noted in the hippocampus and adjoining piriform cortex.</p><p><strong>Conclusion: </strong>The minipig sgC displays a cytoarchitectonic pattern and connectivity like the human and may be well suited for further translational studies on BA25-DBS against depression.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1995-2010"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485045/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katherine L Bryant, Paul R Manger, Mads F Bertelsen, Alexandre A Khrapitchev, Jérôme Sallet, R Austin Benn, Rogier B Mars
{"title":"A map of white matter tracts in a lesser ape, the lar gibbon.","authors":"Katherine L Bryant, Paul R Manger, Mads F Bertelsen, Alexandre A Khrapitchev, Jérôme Sallet, R Austin Benn, Rogier B Mars","doi":"10.1007/s00429-023-02709-9","DOIUrl":"10.1007/s00429-023-02709-9","url":null,"abstract":"<p><p>The recent development of methods for constructing directly comparable white matter atlases in primate brains from diffusion MRI allows us to probe specializations unique to humans, great apes, and other primate taxa. Here, we constructed the first white matter atlas of a lesser ape using an ex vivo diffusion-weighted scan of a brain from a young adult (5.5 years) male lar gibbon. We find that white matter architecture of the gibbon temporal lobe suggests specializations that are reminiscent of those previously reported for great apes, specifically, the expansion of the arcuate fasciculus and the inferior longitudinal fasciculus in the temporal lobe. Our findings suggest these white matter expansions into the temporal lobe were present in the last common ancestor to hominoids approximately 16 million years ago and were further modified in the great ape and human lineages. White matter atlases provide a useful resource for identifying neuroanatomical differences and similarities between humans and other primate species and provide insight into the evolutionary variation and stasis of brain organization.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1839-1854"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71410551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mapping sagittal-plane reference brain atlas of the cynomolgus macaque (Macaca fascicularis) based on consecutive cytoarchitectonic images.","authors":"Yue Luo, Xiangning Li, Can Zhou, Guangcai Liu, Xueyan Jia, Xiaoquan Yang, Anan Li, Hui Gong, Zhao Feng","doi":"10.1007/s00429-024-02851-y","DOIUrl":"10.1007/s00429-024-02851-y","url":null,"abstract":"<p><p>The brain atlas is essential for exploring the anatomical structure and function of the brain. Non-human primates, such as cynomolgus macaque, have received increasing attention due to their genetic similarity to humans. However, current macaque brain atlases only offer coarse sections with intervals along the coronal direction, failing to meet the needs of single-cell resolution studies in functional and multi-omics research of the macaque brain. To address this issue, we utilized fluorescence micro-optical sectioning tomography to obtain sub-micron resolution cytoarchitectonic images of the macaque brain at the sagittal plane. Based on the obtained 8000 image sequences, a reference brain atlas comprising 45 sagittal sections was created, delineating 270 brain regions other than the cortex. Additionally, a website was established to share the reference atlas corresponding image data. This study is expected to provide an essential dataset and tool for scientists studying the macaque brain.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2045-2057"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485111/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The superior colliculus projection upon the macaque inferior olive.","authors":"Paul J May, Susan Warren, Yoshiko Kojima","doi":"10.1007/s00429-023-02743-7","DOIUrl":"10.1007/s00429-023-02743-7","url":null,"abstract":"<p><p>Saccade accommodation is a productive model for exploring the role of the cerebellum in behavioral plasticity. In this model, the target is moved during the saccade, gradually inducing a change in the saccade vector as the animal adapts. The climbing fiber pathway from the inferior olive provides a visual error signal generated by the superior colliculus that is believed to be crucial for cerebellar adaptation. However, the primate tecto-olivary pathway has only been explored using large injections of the central portion of the superior colliculus. To provide a more detailed picture, we have made injections of anterograde tracers into various regions of the macaque superior colliculus. As shown previously, large central injections primarily label a dense terminal field within the C subdivision at caudal end of the contralateral medial inferior olive. Several, previously unobserved, sites of sparse terminal labeling were noted: bilaterally in the dorsal cap of Kooy and ipsilaterally in the C subdivision of the medial inferior olive. Small, physiologically directed, injections into the rostral, small saccade portion of the superior colliculus produced terminal fields in the same regions of the medial inferior olive, but with decreased density. Small injections of the caudal superior colliculus, where large amplitude gaze changes are encoded, again labeled a terminal field located in the same areas. The lack of a topographic pattern within the main tecto-olivary projection suggests that either the precise vector of the visual error is not transmitted to the vermis, or that encoding of this error is via non-topographic means.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1855-1871"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139490352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Farewell and announcement.","authors":"Susan R Sesack","doi":"10.1007/s00429-024-02856-7","DOIUrl":"10.1007/s00429-024-02856-7","url":null,"abstract":"","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1773"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maëlig Chauvel, Marco Pascucci, Ivy Uszynski, Bastien Herlin, Jean-François Mangin, William D Hopkins, Cyril Poupon
{"title":"Comparative analysis of the chimpanzee and human brain superficial structural connectivities.","authors":"Maëlig Chauvel, Marco Pascucci, Ivy Uszynski, Bastien Herlin, Jean-François Mangin, William D Hopkins, Cyril Poupon","doi":"10.1007/s00429-024-02823-2","DOIUrl":"10.1007/s00429-024-02823-2","url":null,"abstract":"<p><p>Diffusion MRI tractography (dMRI) has fundamentally transformed our ability to investigate white matter pathways in the human brain. While long-range connections have extensively been studied, superficial white matter bundles (SWMBs) have remained a relatively underexplored aspect of brain connectivity. This study undertakes a comprehensive examination of SWMB connectivity in both the human and chimpanzee brains, employing a novel combination of empirical and geometric methodologies to classify SWMB morphology in an objective manner. Leveraging two anatomical atlases, the Ginkgo Chauvel chimpanzee atlas and the Ginkgo Chauvel human atlas, comprising respectively 844 and 1375 superficial bundles, this research focuses on sparse representations of the morphology of SWMBs to explore the little-understood superficial connectivity of the chimpanzee brain and facilitate a deeper understanding of the variability in shape of these bundles. While similar, already well-known in human U-shape fibers were observed in both species, other shapes with more complex geometry such as 6 and J shapes were encountered. The localisation of the different bundle morphologies, putatively reflecting the brain gyrification process, was different between humans and chimpanzees using an isomap-based shape analysis approach. Ultimately, the analysis aims to uncover both commonalities and disparities in SWMBs between chimpanzees and humans, shedding light on the evolution and organization of these crucial neural structures.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1943-1977"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485151/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Austin Robertson, Daniel J Miller, Adam Hull, Blake E Butler
{"title":"Quantifying myelin density in the feline auditory cortex.","authors":"Austin Robertson, Daniel J Miller, Adam Hull, Blake E Butler","doi":"10.1007/s00429-024-02821-4","DOIUrl":"10.1007/s00429-024-02821-4","url":null,"abstract":"<p><p>The cerebral cortex comprises many distinct regions that differ in structure, function, and patterns of connectivity. Current approaches to parcellating these regions often take advantage of functional neuroimaging approaches that can identify regions involved in a particular process with reasonable spatial resolution. However, neuroanatomical biomarkers are also very useful in identifying distinct cortical regions either in addition to, or in place of functional measures. For example, differences in myelin density are thought to relate to functional differences between regions, are sensitive to individual patterns of experience, and have been shown to vary across functional hierarchies in a predictable manner. Accordingly, the current study provides quantitative stereological estimates of myelin density for each of the 13 regions that make up the feline auditory cortex. We demonstrate that significant differences can be observed between auditory cortical regions, with the highest myelin density observed in the regions that comprise the auditory core (i.e., the primary auditory cortex and anterior auditory field). Moreover, our myeloarchitectonic map suggests that myelin density varies in a hierarchical fashion that conforms to the traditional model of spatial organization in auditory cortex. Taken together, these results establish myelin as a useful biomarker for parcellating auditory cortical regions, and provide detailed estimates against which other, less invasive methods of quantifying cortical myelination may be compared.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1927-1941"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luca Bonfanti, Chiara La Rosa, Marco Ghibaudi, Chet C Sherwood
{"title":"Adult neurogenesis and \"immature\" neurons in mammals: an evolutionary trade-off in plasticity?","authors":"Luca Bonfanti, Chiara La Rosa, Marco Ghibaudi, Chet C Sherwood","doi":"10.1007/s00429-023-02717-9","DOIUrl":"10.1007/s00429-023-02717-9","url":null,"abstract":"<p><p>Neuronal plasticity can vary remarkably in its form and degree across animal species. Adult neurogenesis, namely the capacity to produce new neurons from neural stem cells through adulthood, appears widespread in non-mammalian vertebrates, whereas it is reduced in mammals. A growing body of comparative studies also report variation in the occurrence and activity of neural stem cell niches between mammals, with a general trend of reduction from small-brained to large-brained species. Conversely, recent studies have shown that large-brained mammals host large amounts of neurons expressing typical markers of neurogenesis in the absence of cell division. In layer II of the cerebral cortex, populations of prenatally generated, non-dividing neurons continue to express molecules indicative of immaturity throughout life (cortical immature neurons; cINs). After remaining in a dormant state for a very long time, these cINs retain the potential of differentiating into mature neurons that integrate within the preexisting neural circuits. They are restricted to the paleocortex in small-brained rodents, while extending into the widely expanded neocortex of highly gyrencephalic, large-brained species. The current hypothesis is that these populations of non-newly generated \"immature\" neurons might represent a reservoir of developmentally plastic cells for mammalian species that are characterized by reduced stem cell-driven adult neurogenesis. This indicates that there may be a trade-off between various forms of plasticity that coexist during brain evolution. This balance may be necessary to maintain a \"reservoir of plasticity\" in brain regions that have distinct roles in species-specific socioecological adaptations, such as the neocortex and olfactory structures.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1775-1793"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41191296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catherine B Hathaway, Willa I Voorhies, Neha Sathishkumar, Chahat Mittal, Jewelia K Yao, Jacob A Miller, Benjamin J Parker, Kevin S Weiner
{"title":"Defining putative tertiary sulci in lateral prefrontal cortex in chimpanzees using human predictions.","authors":"Catherine B Hathaway, Willa I Voorhies, Neha Sathishkumar, Chahat Mittal, Jewelia K Yao, Jacob A Miller, Benjamin J Parker, Kevin S Weiner","doi":"10.1007/s00429-023-02638-7","DOIUrl":"10.1007/s00429-023-02638-7","url":null,"abstract":"<p><p>Similarities and differences in brain structure and function across species are of major interest in systems neuroscience, comparative biology, and brain mapping. Recently, increased emphasis has been placed on tertiary sulci, which are shallow indentations of the cerebral cortex that appear last in gestation, continue to develop after birth, and are largely either human or hominoid specific. While tertiary sulcal morphology in lateral prefrontal cortex (LPFC) has been linked to functional representations and cognition in humans, it is presently unknown if small and shallow LPFC sulci also exist in non-human hominoids. To fill this gap in knowledge, we leveraged two freely available multimodal datasets to address the following main question: Can small and shallow LPFC sulci be defined in chimpanzee cortical surfaces from human predictions of LPFC tertiary sulci? We found that 1-3 components of the posterior middle frontal sulcus (pmfs) in the posterior middle frontal gyrus are identifiable in nearly all chimpanzee hemispheres. In stark contrast to the consistency of the pmfs components, we could only identify components of the paraintermediate frontal sulcus (pimfs) in two chimpanzee hemispheres. Putative LPFC tertiary sulci were relatively smaller and shallower in chimpanzees compared to humans. In both species, two of the pmfs components were deeper in the right compared to the left hemisphere. As these results have direct implications for future studies interested in the functional and cognitive role of LPFC tertiary sulci, we share probabilistic predictions of the three pmfs components to guide the definitions of these sulci in future studies.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2059-2068"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10130686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}