María Mónica Castillo Ortega, Jesús Manuel Quiroz Castillo, Teresa Del Castillo Castro, Dora Evelia Rodriguez Felix, Hisila Del Carmen Santacruz Ortega, Octavio Manero, Karla Alejandra Lopez Gastelum, Lerma Hanaiy Chan Chan, Diego Hernandez Martinez, Jose Agustin Tapia Hernández, Damian Francisco Plascencia Martínez
{"title":"Aloe vera mucilage loaded gelatin electrospun fibers contained in polylactic acid coaxial system and polylactic acid and poly(e-caprolactone) tri-layer membranes for tissue engineering.","authors":"María Mónica Castillo Ortega, Jesús Manuel Quiroz Castillo, Teresa Del Castillo Castro, Dora Evelia Rodriguez Felix, Hisila Del Carmen Santacruz Ortega, Octavio Manero, Karla Alejandra Lopez Gastelum, Lerma Hanaiy Chan Chan, Diego Hernandez Martinez, Jose Agustin Tapia Hernández, Damian Francisco Plascencia Martínez","doi":"10.3233/BME-240050","DOIUrl":"10.3233/BME-240050","url":null,"abstract":"<p><strong>Background: </strong>Polymeric electrospun mats have been used as scaffolds in tissue engineering for the development of novel materials due to its characteristics. The usage of synthetic materials has gone in decline due to environmental problems associated with their synthesis and waste disposal. Biomaterials such as biopolymers have been used recently due to good compatibility on biological applications and sustainability.</p><p><strong>Objective: </strong>The purpose of this work is to obtain novel materials based on synthetic and natural polymers for applications on tissue engineering.</p><p><strong>Methods: </strong>Aloe vera mucilage was obtained, chemically characterized, and used as an active compound contained in electrospun mats. Polymeric scaffolds were obtained in single, coaxial and tri-layer structures, characterized and evaluated in cell culture.</p><p><strong>Results: </strong>Mucilage loaded electrospun fibers showed good compatibility due to formation of hydrogen bonds between polymers and biomolecules from its structure, evidenced by FTIR spectra and thermal properties. Cell viability test showed that most of the obtained mats result on viability higher than 75%, resulting in nontoxic materials, ready to be used on scaffolding applications.</p><p><strong>Conclusion: </strong>Mucilage containing fibers resulted on materials with potential use on scaffolding applications due to their mechanical performance and cell viability results.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"387-399"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rupan Yuan, Sijie Zhou, Xiong Xiong, Dan Yang, Donghu Lin, Taiyi Li, Bin He, Guihua Wei, Shuxin Qu
{"title":"Enhanced mechanic properties of calcium phosphate cements via mussel-inspired adhesive as bone substitute: Highlights of their interactions.","authors":"Rupan Yuan, Sijie Zhou, Xiong Xiong, Dan Yang, Donghu Lin, Taiyi Li, Bin He, Guihua Wei, Shuxin Qu","doi":"10.3233/BME-230017","DOIUrl":"10.3233/BME-230017","url":null,"abstract":"<p><strong>Background: </strong>Inspired by natural bones, many organic components were added to Calcium Phosphate Cements (CPCs) to improve their mechanical strength. However, the strength of these composite CPCs is limited by the low strength of organic components itself and the weak interaction between organic components and CPCs.</p><p><strong>Objective: </strong>Firstly, a composite CPC containing mussel-inspired adhesive, Poly-(Dopamine Methacrylamide-co-2-methoxy Ethylacrylate) (pDM) was developed. Secondly, the interactions between pDM and CPC and their effect on mechanical properties were investigated.</p><p><strong>Methods: </strong>The interactions between pDM and CPC were performed by Nuclear Magnetic Resonance, Laser Raman, X-ray Photoelectron Spectroscopy, Fourier Transform-Infrared Spectroscopy and X-ray Diffraction Analysis.</p><p><strong>Results: </strong>The toughness and compressive strength of pDM-CPC scaffold were both significantly enhanced, because of the enhanced interface binding strength among CPC and pDM due to their interaction and the improved mechanical strength of pDM owing to its self-oxidation cross-linking. The toughness of pDM-CPC scaffolds increased with the increased contents of pDM, while pDM-CPC scaffold containing 35 wt.% pDM had the highest compressive strength of all, which the latter was more than five times compared to that of CPC.</p><p><strong>Conclusion: </strong>The mechanically strong pDM-CPC scaffolds has potential application in bone regeneration as well as in craniofacial and orthopedic repair.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"13-26"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10031624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating the efficacy of the punch-out technique in systemic-to-pulmonary shunts: A computational fluid dynamics approach.","authors":"Shiho Yamazaki, Ryosuke Kowatari, Tetsuya Yano, Hanae Sasaki, Kazuyuki Daitoku, Masahito Minakawa","doi":"10.3233/BME-240022","DOIUrl":"10.3233/BME-240022","url":null,"abstract":"<p><strong>Background: </strong>Systemic-to-pulmonary shunt is a palliative procedure used to decrease pulmonary blood flow in congenital heart diseases. Shunt stenosis or occlusion has been reported to be associated with mortality; therefore, the management of thrombotic complications remains a challenge for most congenital cardiovascular surgeons. Despite its importance, the optimal method for shunt anastomosis remains unclear.</p><p><strong>Objective: </strong>The study investigates the clinical benefits of the punch-out technique over conventional methods in the anastomosis process of Systemic-to-pulmonary shunt, focusing on its potential to reduce shunt-related complications.</p><p><strong>Methods: </strong>Anastomotic models were created by two different surgeons employing both traditional slit and innovative punch-out techniques. Computational tomography was performed to construct three-dimensional models for computational fluid dynamics (CFD) analysis. We assessed the flow pattern, helicity, magnitude of wall shear stress, and its gradient.</p><p><strong>Results: </strong>The anastomotic flow area was larger in the model using the punch-out technique than in the slit model. In CFD simulation, we found that using the punch-out technique decreases the likelihood of establishing a high wall shear stress distribution around the anastomosis line in the model.</p><p><strong>Conclusion: </strong>The punch-out technique emerges as a promising method in SPS anastomosis, offering a reproducible and less skill-dependent alternative that potentially diminishes the risk of shunt occlusion, thereby enhancing patient outcomes.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"425-437"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141909753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rohmat Nursin, Masitah Hayati Harun, Dasmawati Mohamad, Siti Khadijah Mohd Bakhori, Shahrom Mahmud
{"title":"Subcutaneous tissue reaction to a novel nano zinc oxide eugenol dental cement.","authors":"Rohmat Nursin, Masitah Hayati Harun, Dasmawati Mohamad, Siti Khadijah Mohd Bakhori, Shahrom Mahmud","doi":"10.3233/BME-230118","DOIUrl":"10.3233/BME-230118","url":null,"abstract":"<p><strong>Background: </strong>Zinc oxide eugenol (ZOE) cement is a popular dental material due mainly to its analgesic, antibacterial and anti-inflammatory effects. The formulation of ZOE cement from nano particle-sized zinc oxide (ZnO) has the potential to increase these properties as well as reduce its adverse effects to the surrounding tissues.</p><p><strong>Objective: </strong>This study evaluated the subcutaneous tissue response towards nano ZOE cements (ZOE-A and ZOE-B) in comparison to conventional ZOE (ZOE-K).</p><p><strong>Methods: </strong>Test materials were implanted into 15 New Zealand white rabbits. Tissue samples were obtained after 7, 14, and 30 days (n = 5 per period) for histopathological evaluation of inflammatory cell infiltrate, fibrous tissue condensation, and abscess formation.</p><p><strong>Results: </strong>ZOE-A showed the lowest score for the variable macrophage and lymphocyte at day 7. Both ZOE-A and ZOE-B presented lower fibrous tissue condensation and abscess formation compared to conventional ZOE-K. By day 30, ZOE-A exhibited less lymphocytic and neutrophilic infiltrate compared to the other materials, while ZOE-B had the lowest score for macrophages. ZOE-K exerted higher inflammatory cell response at almost all of the experimental periods. All of the materials resulted in thin fiber condensation after 30 days.</p><p><strong>Conclusions: </strong>Rabbit tissue implanted with ZOE-A and ZOE-B showed better response compared to ZOE-K.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"139-151"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138440236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Varus/valgus stability in imageless robotic-assisted total knee arthroplasty applying three-dimensional assessment of varus/valgus stress X-rays.","authors":"Hiroki Hijikata, Tomoharu Mochizuki, Keisuku Maeda, Osamu Tanifuji, Go Omori, Noriaki Yamamoto, Hiroyuki Kawashima","doi":"10.3233/BME-230146","DOIUrl":"10.3233/BME-230146","url":null,"abstract":"<p><strong>Background: </strong>The postoperative varus/valgus stability assessment in stress X-rays has been established as an evaluation index. However, it is performed by the two-dimensional (2D) method rather than the three-dimensional (3D) method.</p><p><strong>Objective: </strong>This study aimed to identify the precision and reproducibility of measuring varus/valgus stress X-rays three-dimensionally and to examine varus/valgus stability under anesthesia in imageless robotic assisted total knee arthroplasty (rTKA).</p><p><strong>Methods: </strong>This prospective study analyzed 52 consecutive rTKAs (five males, 67 ± 5.3 years; 47 females, 74 ± 5.9 years). Postoperative varus/valgus stress X-rays in knee extension under anesthesia at manual maximum stress were three-dimensionally assessed by 2D-3D image matching technique using the 3D bone and component models. Varus/valgus angle between components (VV angle) in no stress, valgus stress, varus stress, medial joint opening (MJO), and lateral joint opening (LJO) were evaluated, clarifying this method's precision and reproducibility and valgus/varus stability.</p><p><strong>Results: </strong>All parameters' precision and reproducibility had <1° mean differences and high intra- and inter-class correlation coefficients. Bland-Altman plots showed no fixed and proportional bias. Non-stress VV angle, valgus VV angle, varus VV angle, MJO, and LJO were 3.6 ± 1.2°, 1.0 ± 1.4°, 7.1 ± 1.9°, 1.5 ± 1.0 mm, and 2.8 ± 2.7 mm, respectively.</p><p><strong>Conclusion: </strong>This prospective study demonstrated that (1) the three-dimensional measurement method provided sufficient precision and reproducibility, and (2) the rTKAs could achieve good postoperative varus/valgus stability with a small standard deviation.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"179-189"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138476781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehdi Hekimoğlu, Hıdır Özer, Kamil Kiraz, Ceylan Onursal, Ferit Siyahcan, Ali Fahir Özer
{"title":"Surface hardening of Ti-Al-V superalloy spinal implant by using the boronization method.","authors":"Mehdi Hekimoğlu, Hıdır Özer, Kamil Kiraz, Ceylan Onursal, Ferit Siyahcan, Ali Fahir Özer","doi":"10.3233/BME-230033","DOIUrl":"10.3233/BME-230033","url":null,"abstract":"<p><strong>Background: </strong>We compared the raw Ti-Al-V super alloy transpedicular implant screws with boronized and surface-hardened transpedicular implant screws.</p><p><strong>Objective: </strong>To improve patients' postoperative prognosis with the production of harder and less fragile screws.</p><p><strong>Methods: </strong>Surface hardening was achieved by applying green-body encapsulation of the specimen with elemental boron paste which is sintered at elevated temperatures to ensure the boron-metal diffusion. Boron transported into the Ti-Al-V super alloy matrix gradually while suppressing aluminum and a homogeneously boronized surface with a thickness of ∼15 microns was obtained. The uniform external shell was enriched with TiB2, which is one of the hardest ceramics. The Ti-Al-V core material, where boron penetration diminishes, shows cohesive transition and ensures intact core-surface structure.</p><p><strong>Results: </strong>Scanning electron microscope images confirmed a complete homogeneous, uniform and non-laminating surface formation. Energy-dispersive X-ray monitored the elemental structural mapping and proved the replacement of the aluminum sites on the surface with boron ending up the TiB2. The procedure was 8.6 fold improved the hardness and the mechanical resistance of the tools.</p><p><strong>Conclusions: </strong>Surface-hardened, boronized pedicular screws can positively affect the prognosis. In vivo studies are needed to prove the safety of use.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"39-52"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10319309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental characterization of motion resistance of the sacroiliac joint.","authors":"Ryota Toyohara, Niels Hammer, Toshiro Ohashi","doi":"10.3233/BME-230041","DOIUrl":"10.3233/BME-230041","url":null,"abstract":"<p><strong>Background: </strong>The human sacroiliac joint (SIJ) in vivo is exposed to compressive and shearing stress environment, given the joint lines are almost parallel to the direction of gravity. The SIJ supports efficient bipedal walking. Unexpected or unphysiological, repeated impacts are believed to cause joint misalignment and result in SIJ pain. In the anterior compartment of the SIJ being synovial, the articular surface presents fine irregularities, potentially restricting the motion of the joints.</p><p><strong>Objective: </strong>To clarify how the SIJ articular surface affects the resistance of the motion under physiological loading.</p><p><strong>Methods: </strong>SIJ surface models were created based on computed tomography data of three patients and subsequently 3D printed. Shear resistance was measured in four directions and three combined positions using a customized setup. In addition, repositionability of SIJs was investigated by unloading a shear force.</p><p><strong>Results: </strong>Shear resistance of the SIJ was the highest in the inferior direction. It changed depending on the direction of the shear and the alignment position of the articular surface.</p><p><strong>Conclusion: </strong>SIJ articular surface morphology is likely designed to accommodate upright bipedal walking. Joint misalignment may in consequence increase the risk of subluxation.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"53-63"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10302838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reliability and validity of estimated angles information assessed using inertial measurement unit-based motion sensors.","authors":"Taiki Morikawa, Nariyuki Mura, Toshiaki Sato, Hiroshi Katoh","doi":"10.3233/BME-240031","DOIUrl":"10.3233/BME-240031","url":null,"abstract":"<p><strong>Background: </strong>Inertial measurement unit (IMU)-based motion sensors are affordable, and their use is appropriate for rehabilitation. However, regarding the accuracy of estimated angle information obtained from this sensor, it is reported that it is likely affected by velocity.</p><p><strong>Objective: </strong>The present study investigated the reliability and validity of the angle information obtained using IMU-based sensors compared with a three-dimensional (3D) motion analyzer.</p><p><strong>Methods: </strong>The Euler angle obtained using the 3D motion analyzer and the angle obtained using the IMU-based sensor (IMU angle) were compared. Reliability was assessed by comparing the Bland-Altman analysis, intra-class correlation coefficient (ICC) (1,1), and cross-correlation function. The root mean square (RMS) error, ICC (2,1), and cross-correlation function were used to compare data on the Euler and IMU angles to evaluate the validity.</p><p><strong>Results: </strong>Regarding reliability, the Bland-Atman analysis indicated no fixed or proportional bias in the angle measurements. The measurement errors ranged from 0.2° to 3.2°. In the validity, the RMS error ranged from 0.3° to 2.2°. The ICCs (2,1) were 0.9. The cross-correlation functions were >0.9, which indicated a high degree of agreement.</p><p><strong>Conclusion: </strong>The IMU-based sensor had a high reliability and validity. The IMU angle may be used in rehabilitation.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"439-450"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication of injectable alginate hydrogels with sustained release of 4-octyl itaconate for articular anti-inflammatory.","authors":"Ronghua Bao, Yifan Mao, Yuliang Zhang, Junlei Chai, Yuanbin Zhang, Cheng Luo, Kailong Zhang, Guohua Jiang, Xiaodan He","doi":"10.3233/BME-240103","DOIUrl":"10.3233/BME-240103","url":null,"abstract":"<p><strong>Background: </strong>Osteoarthritis (OA) is a chronic and degenerative joint disease that remains a great challenge in treatment due to the lack of effective therapies. 4-octyl itaconate (4-OI) is a novel and potent modulator of inflammation for the treatment of inflammatory disease. However, the clinical usage of 4-OI is limited due to its poor solubility and low bioavailability. As a promising drug delivery strategy, injectable hydrogels offers an effective approach to address these limitations of 4-OI.</p><p><strong>Objective: </strong>The aim of the study was to verify that the composite 4-OI/SA hydrogels could achieve a controlled release of 4-OI and reduce damage to articular cartilage in the group of osteoarthritic rats treated with the system.</p><p><strong>Methods: </strong>In this study, an injectable composite hydrogel containing sodium alginate (SA) and 4-octyl itaconate (4-OI) has been developed for continuous intra-articular administration in the treatment of OA.</p><p><strong>Results: </strong>After intra-articular injection in arthritic rats, the as-prepared 4-OI/SA hydrogel containing of 62.5 μM 4-OI effectively significantly reduced the expression of TNF-α, IL-1β, IL-6 and MMP3 in the ankle fluid. Most importantly, the as-prepared 4-OI/SA hydrogel system restored the morphological parameters of the ankle joints close to normal.</p><p><strong>Conclusion: </strong>4-OI/SA hydrogel shows a good anti-inflammatory activity and reverse cartilage disruption, which provide a new strategy for the clinical treatment of OA.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"475-485"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanochemical synthesis of cerium chlorapatite from a mixture of cerium chloride heptahydrate, dicalcium phosphate dihydrate, and calcium hydroxide for biomedical application.","authors":"Yuta Otsuka, Hiroshi Kono, Masafumi Kikuchi","doi":"10.3233/BME-230073","DOIUrl":"10.3233/BME-230073","url":null,"abstract":"<p><strong>Background: </strong>Cerium ions promote osteoclastogenesis and activate bone metabolism, while cerium oxide nanoparticles exhibit potent anti-inflammatory properties, making them promising for biomedical applications.</p><p><strong>Objective: </strong>The purpose of this study was to develop and evaluate a synthesis method for sustained-release cerium-ion bioceramics containing apatite. Substituted apatite was found to be an effective biomaterial.</p><p><strong>Methods: </strong>Cerium-containing chlorapatite was synthesized using a mechanochemical method employing dicalcium phosphate, cerium chloride heptahydrate, and calcium hydroxide as raw materials. The synthesized samples were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy.</p><p><strong>Results: </strong>Cerium chlorapatite was successfully synthesized in the 10.1% and 20.1% samples. However, at Ce concentrations higher than 30.2%, the samples consisted of three or more phases, indicating the instability of a single phase.</p><p><strong>Conclusion: </strong>The method used in this study was found to be more efficient and cost-effective than the precipitation method for producing substituted apatite and calcium phosphate-based biomaterials. This research contributes to the development of sustained-release cerium-ion bioceramics with potential applications in the field of biomedicine.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":" ","pages":"77-85"},"PeriodicalIF":1.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9754643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}