{"title":"Simulation-guided development of advanced PID control algorithm for skin cooling in radiofrequency lipolysis","authors":"Binyu Wang, Lianru Zang, Yingxi Lu, Mengying Zhan, Tingting Sun, Yu Zhou, Chengli Song","doi":"10.3233/bme-230185","DOIUrl":null,"url":null,"abstract":"BACKGROUND:The clinical outcomes of bipolar radiofrequency (RF) lipolysis, a prevalent non-invasive fat reduction procedure, hinge on the delicate balance between effective lipolysis and patient safety, with skin overheating and subsequent tissue damage as primary concerns. OBJECTIVE:This study aimed to investigate a novel bipolar radiofrequency lipolysis technique, safeguarding the skin through an innovative PID temperature control algorithm. METHODS:Utilizing COMSOL Multiphysics simulation software, a two-dimensional fat and skin tissue model was established, simulating various PID temperature control schemes. The crux of the simulation involved a comparative analysis of different PID temperatures at 45 °C, 50 °C, and 55 °C and constant power strategies, assessing their implications on skin temperature. Concurrently, a custom bipolar radiofrequency lipolysis device was developed, with ex vivo experiments conducted using porcine tissue for empirical validation. RESULTS:The findings indicated that with PID settings of Kp = 7, Ki = 2, and Kd = 0, and skin temperature control at 45 °C or 50 °C, the innovative PID-based epidermal temperature control strategy successfully maintained the epidermal temperature within a safe range. This maintenance was achieved without compromising the effectiveness of RF lipolysis, significantly reducing the risk of thermal damage to the skin layers. CONCLUSION:Our research confirms the substantial practical utility of this advanced PID-based bipolar RF lipolysis technique in clinical aesthetic procedures, enhancing patient safety during adipose tissue ablation therapies.","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":"31 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/bme-230185","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND:The clinical outcomes of bipolar radiofrequency (RF) lipolysis, a prevalent non-invasive fat reduction procedure, hinge on the delicate balance between effective lipolysis and patient safety, with skin overheating and subsequent tissue damage as primary concerns. OBJECTIVE:This study aimed to investigate a novel bipolar radiofrequency lipolysis technique, safeguarding the skin through an innovative PID temperature control algorithm. METHODS:Utilizing COMSOL Multiphysics simulation software, a two-dimensional fat and skin tissue model was established, simulating various PID temperature control schemes. The crux of the simulation involved a comparative analysis of different PID temperatures at 45 °C, 50 °C, and 55 °C and constant power strategies, assessing their implications on skin temperature. Concurrently, a custom bipolar radiofrequency lipolysis device was developed, with ex vivo experiments conducted using porcine tissue for empirical validation. RESULTS:The findings indicated that with PID settings of Kp = 7, Ki = 2, and Kd = 0, and skin temperature control at 45 °C or 50 °C, the innovative PID-based epidermal temperature control strategy successfully maintained the epidermal temperature within a safe range. This maintenance was achieved without compromising the effectiveness of RF lipolysis, significantly reducing the risk of thermal damage to the skin layers. CONCLUSION:Our research confirms the substantial practical utility of this advanced PID-based bipolar RF lipolysis technique in clinical aesthetic procedures, enhancing patient safety during adipose tissue ablation therapies.
期刊介绍:
The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.