Eurographics Symposium on Parallel Graphics and Visualization : EG PGV : [proceedings]. Eurographics Symposium on Parallel Graphics and Visualization最新文献
{"title":"Design and implementation of a large-scale hybrid distributed graphics system","authors":"Jian Yang, Jiaoying Shi, Zhefan Jin, Hui Zhang","doi":"10.2312/EGPGV/EGPGV02/039-050","DOIUrl":"https://doi.org/10.2312/EGPGV/EGPGV02/039-050","url":null,"abstract":"Although modern graphics hardware has strong capability to render millions of triangles within a second, huge scenes are still unable to be rendered in real-time. Lots of parallel and distributed graphics systems are explored to solve this problem. However none of them is built for large-scale graphics applications.We designed AnyGL, a large-scale hybrid distributed graphics system, which consists of four types of logical nodes, Geometry Distributing Node, Geometry Rendering Node, Image Composition Node and Display Node. The first two types of logical nodes are combined to be a sort-first graphics architecture while the others compose images. A new state tracking method based on logical timestamp is also pro-posed for state tracking of large-scale distributed graphics systems. Besides, three classes of compression are employed to reduce the requirement of network bandwidth, including command code compression, geometry compression and image compression. A new extension, global share of textures and display lists, is also implemented in AnyGL to avoid memory explosion in large-scale cluster rendering systems.","PeriodicalId":90824,"journal":{"name":"Eurographics Symposium on Parallel Graphics and Visualization : EG PGV : [proceedings]. Eurographics Symposium on Parallel Graphics and Visualization","volume":"22 1","pages":"39-49"},"PeriodicalIF":0.0,"publicationDate":"2002-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83302072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bram Stolk, Faizal Abdoelrahman, A. Koning, Paul Wielinga, Jean-Marc Neefs, Andrew P. Stubbs, A. Bondt, P. Leemans, P. Spek
{"title":"Mining the human genome using virtual reality","authors":"Bram Stolk, Faizal Abdoelrahman, A. Koning, Paul Wielinga, Jean-Marc Neefs, Andrew P. Stubbs, A. Bondt, P. Leemans, P. Spek","doi":"10.5555/569673.569676","DOIUrl":"https://doi.org/10.5555/569673.569676","url":null,"abstract":"The analysis of genomic data and integration of diverse biological data sources has become increasingly difficult for researches in the life sciences. This problem is exacerbated by the speed with which new data is gathered through automated technology like DNA microarrays. We developed a virtual reality application for visualizing hierarchical relationships within a gene family and for visualizing networks of gene expression data. Integration of other information from multiple databases with these visualizations can aid pharmaceutical researchers in selecting target genes or proteins for new drugs. We found the application of virtual reality to the field of genomics to be successfull.","PeriodicalId":90824,"journal":{"name":"Eurographics Symposium on Parallel Graphics and Visualization : EG PGV : [proceedings]. Eurographics Symposium on Parallel Graphics and Visualization","volume":"33 1","pages":"17-21"},"PeriodicalIF":0.0,"publicationDate":"2002-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72956162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An interleaved parallel volume renderer with PC-clusters","authors":"Antonio Garcia, Han-Wei Shen","doi":"10.2312/EGPGV/EGPGV02/051-060","DOIUrl":"https://doi.org/10.2312/EGPGV/EGPGV02/051-060","url":null,"abstract":"Parallel Volume Rendering has been realized using various load distribution methods that subdivide either the screen, called image-space partitioning, or the volume dataset, called object-space partitioning. The major advantages of image-space partitioing are load balancing and low communication overhead, but processors require access to the full volume in order to render the volume with arbitrary views without frequent data redistributions. Subdividing the volume, on the other hand, provides storage scalability as more processors are added, but requires image compositing and thus higher communication bandwidth for producing the final image. In this paper, we present a parallel volume rendering algorithm that combines the benefits of both image-space and object-space partition schemes based on the idea of pixel and volume interleaving. We first subdivide the processors into groups. Each group is responsible for rendering a portion of the volume. Inside of a group, every member interleaves the data samples of the volume and the pixels of the screen. Interleaving the data provides storage scalability and interleaving the pixels reduces communication overhead. Our hybrid object- and image-space partitioning scheme was able to reduce the image compositing cost, incur in low communication overhead and balance rendering workload at the expense of image quality. Experiments on a PC-cluster demonstrate encouraging results.","PeriodicalId":90824,"journal":{"name":"Eurographics Symposium on Parallel Graphics and Visualization : EG PGV : [proceedings]. Eurographics Symposium on Parallel Graphics and Visualization","volume":"2004 1","pages":"51-59"},"PeriodicalIF":0.0,"publicationDate":"2002-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86262178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interactive ray tracing of time varying data","authors":"E. Reinhard, C. Hansen, S. Parker","doi":"10.2312/EGPGV/EGPGV02/077-082","DOIUrl":"https://doi.org/10.2312/EGPGV/EGPGV02/077-082","url":null,"abstract":"We present a simple and effective algorithm for ray tracing iso-surfaces of time varying data sets. Each time step is partitioned into separate ranges of potentional iso-surface values. This creates a large number of relatively small files. Out-of-core rendering is implemented by reading for each time step the relevant iso-surface file, which contains its own spatial subdivision as well as the volumetric data. Since any of these data partitions is smaller than a single time step, the I/O bottleneck is overcome. Our method capitalizes on the ability of modern architectures to stream data off disk without interference of the operating system. Additionally, only a fraction of a time-step is held in memory at any moment during the visualization, which significantly reduces the required amount of internal memory.","PeriodicalId":90824,"journal":{"name":"Eurographics Symposium on Parallel Graphics and Visualization : EG PGV : [proceedings]. Eurographics Symposium on Parallel Graphics and Visualization","volume":"17 1","pages":"77-82"},"PeriodicalIF":0.0,"publicationDate":"2002-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75449263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parallel performance optimization of large-scale unstructured data visualization for the earth simulator","authors":"Li Chen, I. Fujishiro, K. Nakajima","doi":"10.2312/EGPGV/EGPGV02/133-140","DOIUrl":"https://doi.org/10.2312/EGPGV/EGPGV02/133-140","url":null,"abstract":"This paper describes some efficient parallel performance optimization strategies for large-scale unstructured data visualization on SMP cluster machines including the Earth Simulator in Japan. The three-level hybrid parallelization is employed in our implementation, consisting of message passing for inter-SMP node communication, loop directives by OpenMP for intra-SMP node parallelization, and vectorization for each processing element (PE). In order to improve the speedup performance for the hybrid parallelization, some techniques, such as multi-coloring for removing data race and dynamic load repartition for load balancing, are considered. Good visualization images and high parallel performance have been achieved on Hitachi SR8000 for large-scale unstructured datasets, which shows the feasibility and effectiveness of our strategies.","PeriodicalId":90824,"journal":{"name":"Eurographics Symposium on Parallel Graphics and Visualization : EG PGV : [proceedings]. Eurographics Symposium on Parallel Graphics and Visualization","volume":"76 1","pages":"133-140"},"PeriodicalIF":0.0,"publicationDate":"2002-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90299336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An out-of-core method for computing connectivities of large unstructured meshes","authors":"S. Ueng, K. Sikorski","doi":"10.2312/EGPGV/EGPGV02/097-104","DOIUrl":"https://doi.org/10.2312/EGPGV/EGPGV02/097-104","url":null,"abstract":"Adjacency graphs of meshes are important for visualizing or compressing unstructured scientific data. However, calculating adjacency graphs requires intensive memory space. For large data sets, the calculation becomes very inefficient on desk-top computers with limited main memory. In this article, an out-of-core method is presented for finding connectivities of large unstructured FEA data sets. Our algorithm composes of three stages. At the first stage, FEA cells are read into main memory in blocks. For each cell block read, cell faces are generated and distributed into disjoint groups. These groups are small enough such that each group can reside in main memory without causing any page swapping. The resulted groups are stored in disk files. At the second stage, the face groups are fetched into main memory and processed there one after another. Adjacency graph edges are determined in each face group by sorting faces and examining consecutive faces. The edges contained in a group are kept in a disk file. At the third stage, edge files are merged into a single file by using external merge sort, and the connectivity information is computed.","PeriodicalId":90824,"journal":{"name":"Eurographics Symposium on Parallel Graphics and Visualization : EG PGV : [proceedings]. Eurographics Symposium on Parallel Graphics and Visualization","volume":"81 1","pages":"97-103"},"PeriodicalIF":0.0,"publicationDate":"2002-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90086209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carsten Benthin, Tim Dahmen, I. Wald, P. Slusallek
{"title":"Interactive headlight simulation: a case study of interactive distributed ray tracing","authors":"Carsten Benthin, Tim Dahmen, I. Wald, P. Slusallek","doi":"10.2312/EGPGV/EGPGV02/083-088","DOIUrl":"https://doi.org/10.2312/EGPGV/EGPGV02/083-088","url":null,"abstract":"Todays rasterization graphics hardware provides impressive speed and features making it the standard tool for interactively visualising virtual prototypes early in the industrial design process. However, due to inherent limitations of the rasterization approach many optical effects can only be approximated. For many products, in particular in the car industry, the resulting visual quality and realism is inadequate as the basis for critical design decisions. Thus the original goal of using virtual prototyping --- significantly reducing the number of costly physical mockups --- often cannot be achieved.Interactive ray tracing on a small cluster of PCs is emerging as an alternative visualization technique achieving the required accuracy, quality, and realism. In a case study this paper demonstrates the advantages of using interactive ray tracing for a typical design situation in the car industry: visualizing the prototype of headlights. Due to the highly reflective and refractive nature of headlights, proper quality could only be achieved using a fast interactive ray tracing system.","PeriodicalId":90824,"journal":{"name":"Eurographics Symposium on Parallel Graphics and Visualization : EG PGV : [proceedings]. Eurographics Symposium on Parallel Graphics and Visualization","volume":"15 1","pages":"83-88"},"PeriodicalIF":0.0,"publicationDate":"2002-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84925344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physical cloth simulation on a PC cluster","authors":"F. Zara, F. Faure, Jean-Marc Vincent","doi":"10.2312/EGPGV/EGPGV02/105-112","DOIUrl":"https://doi.org/10.2312/EGPGV/EGPGV02/105-112","url":null,"abstract":"Cloth simulation is of major interest in 3D animation, as it allows the realistic modeling of dressed humans. The goal of our work is to decrease computation time in order to obtain real time dynamics animation. This paper describes a cloth simulation and addresses the problem of parallelizing the implicit time integration and to couple a parallel execution with a standard visualization. We believe that this work could benefit to other applications based on a conjugate gradient solution and other applications of PC clusters.","PeriodicalId":90824,"journal":{"name":"Eurographics Symposium on Parallel Graphics and Visualization : EG PGV : [proceedings]. Eurographics Symposium on Parallel Graphics and Visualization","volume":"38 1","pages":"105-112"},"PeriodicalIF":0.0,"publicationDate":"2002-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82196370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nils Jensen, Stephan Olbrich, H. Pralle, S. Raasch
{"title":"An efficient system for collaboration in tele-immersive environments","authors":"Nils Jensen, Stephan Olbrich, H. Pralle, S. Raasch","doi":"10.2312/EGPGV/EGPGV02/123-132","DOIUrl":"https://doi.org/10.2312/EGPGV/EGPGV02/123-132","url":null,"abstract":"The paper describes the development of a high-performance system for visualizing complex scientific models in real-time. The architecure of the system is a client/server model, in which the simulator generates lists of 3D graphics objects in parallel to the simulation, from where they are sent to a streaming server. The server transfers the 3D objects to viewer clients. Clients communicate over a second connection with each other, which adds the ability to perform collaborative tasks. An application related to computational fluid dynamics is specified where such a tele-immersive system can be used. The approach differs to other solutions because it offers a large set of graphics primitives for visualization, and it is optimized for distributed, heterogenous environments.","PeriodicalId":90824,"journal":{"name":"Eurographics Symposium on Parallel Graphics and Visualization : EG PGV : [proceedings]. Eurographics Symposium on Parallel Graphics and Visualization","volume":"7 1","pages":"123-131"},"PeriodicalIF":0.0,"publicationDate":"2002-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81766612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}