{"title":"Strategy of employing plug-and-play vectors and LC-MS screening to facilitate the discovery of natural products using Aspergillus oryzae.","authors":"Hanliang Shi, Beibei Lin, Mengmeng Zheng, Fengyu Gan, Zhi Lin, Xiujuan Xin, Jian Zhao, Xudong Qu, Faliang An","doi":"10.1186/s40643-024-00833-w","DOIUrl":"10.1186/s40643-024-00833-w","url":null,"abstract":"<p><p>Aspergillus oryzae is a widely used host for heterologous expression of fungal natural products. However, the vectors previously developed are not convenient for use and screening positive transformants by PCR and fermentation is time- and effort-consuming. Hence, three plug-and-play vectors were developed here for multi-gene expression and liquid chromatography mass spectrometry detection was introduced to screen positive transformants. Using rug BGC for verification, we demonstrated that the vectors we developed perform well and liquid chromatography mass spectrometry detection is feasible to screen positive transformants. For deleterious gene expression, PxyrA rather than PamyB was employed. Utilizing the toolkit described here to express natural products, dozen days can be saved.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"2"},"PeriodicalIF":4.3,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of catalase on CPC production during fermentation of Acremonium chrysogenum.","authors":"Ling Liu, Zhen Chen, Xiwei Tian, Ju Chu","doi":"10.1186/s40643-024-00831-y","DOIUrl":"10.1186/s40643-024-00831-y","url":null,"abstract":"<p><p>Cephalosporin C (CPC) is a critical raw material for cephalosporin antibiotics produced by Acremonium chrysogenum. During fermentation, the oxygen supply is a crucial factor limiting the efficient biosynthesis of CPC. This study demonstrated that the addition of exogenous surfactants significantly increased the dissolved oxygen (DO) level, extracellular catalase content, and final CPC titer. Consequently, we hypothesized and examined a correlation between catalase and CPC biosynthesis in A. chrysogenum through both the exogenous addition of hydrogen peroxide (H₂O₂) and the endogenous modulation of the catA expression level. The results indicated that both the addition of H₂O₂ and the ∆catA mutation exhibited similar fermentation trends, leading to decreased extracellular catalase activity and increased intracellular reactive oxygen species (ROS) content, which resulted in reduced CPC production. Conversely, strains that overexpress varying levels of the catA accelerated hyphal differentiation under DO-limiting conditions, reducing intracellular ROS accumulation and decreasing cellular apoptosis, which stabilized CPC yield during the later stages of fermentation. This study provides a critical foundation for further investigations into the regulatory mechanisms governing CPC biosynthesis in A. chrysogenum.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"1"},"PeriodicalIF":4.3,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699191/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel J Lane, Olli Sippula, Jorma Jokiniemi, Mikko Heimonen, Niko M Kinnunen, Perttu Virkajärvi, Narasinha Shurpali
{"title":"Fates of nutrient elements and heavy metals during thermal conversion of cattle slurry-derived anaerobic digestates.","authors":"Daniel J Lane, Olli Sippula, Jorma Jokiniemi, Mikko Heimonen, Niko M Kinnunen, Perttu Virkajärvi, Narasinha Shurpali","doi":"10.1186/s40643-024-00828-7","DOIUrl":"10.1186/s40643-024-00828-7","url":null,"abstract":"<p><p>Thermal processes are emerging as promising solutions to recovering phosphorus and other nutrient elements from anaerobic digestates. The feasibility of nutrient element recovery depends largely on the fates of nutrient elements and heavy metals during thermal processing. This study assesses the partitioning of macronutrients (N, P, K, Na, Ca and Mg) and heavy metals (Zn, Cu, and Mn) between condensed and gaseous phases during thermal conversion of cattle slurry digestates in gas atmospheres of pyrolysis, combustion, and gasification processes. This study also assesses the chemical forms of macronutrients retained in combustion ashes. The partitioning of elements between condensed and gaseous phases was quantified by mass balances based on elemental analyses of char and ash residues. The char and ash residues were prepared in a fixed-bed, batch reactor at temperatures within the range 800-1000 °C. Powder X-ray diffraction was used to identify the chemical forms of macronutrient elements in combustion ashes. Volatilisation of P was low (< 20%) when the digestates were heated in inert and oxidising atmospheres, whereas a reducing atmosphere volatilized P to a major extent (~ 60% at 1000 °C). Oxidising atmospheres increased volatilisation of N but suppressed volatilisation of K, Na, and Zn. Volatilisation of the following elements was low (< 30%) in all investigated operating conditions: Ca, Mg, Mn, and Cu. The combustion ashes contained both high concentrations of P (around 7 w/w%) and acceptable concentrations of regulated heavy metals (Cu, and Zn) for application on agricultural and forest soils in Finland. Phosphorous was retained in the combustion ashes in the form of whitlockite. This form of P is expected to be available to plants when the ashes are added to soil.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"11 1","pages":"115"},"PeriodicalIF":4.3,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142909187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Li Ong, Kam Lock Chan, Antonius Suwanto, Zhi Li, Kian-Hong Ng, Kang Zhou
{"title":"Hydrolysis of palm kernel meal fibre using a newly isolated Bacillus subtilis F6 with high mannanase activity.","authors":"Wei Li Ong, Kam Lock Chan, Antonius Suwanto, Zhi Li, Kian-Hong Ng, Kang Zhou","doi":"10.1186/s40643-024-00826-9","DOIUrl":"10.1186/s40643-024-00826-9","url":null,"abstract":"<p><p>Palm kernel meal (PKM) presents a challenge for non-ruminant livestock feeding due to its high fibre content predominantly in the form of mannan. Microbial fermentation offers a sustainable solution for fibre hydrolysis in lignocellulosic biomass. In this study, a Bacillus subtilis strain (F6), with high mannanase secretion capability, was isolated from the environment. Fermentation of PKM with B. subtilis F6 resulted in at least a 10% reduction in neutral detergent fibre, decreasing from 78.4 to 60.9% within 24 h. Notably, B. subtilis F6 rapidly responded to PKM, producing significant mannanase activity within 6 h, facilitating quick fibre degradation. Transcriptome analysis identified key enzymes involved in this process, with β-mannanase GmuG showing the highest increase in expression (45.2-fold) after fermentation. Purified recombinant GmuG exhibited strong PKM hydrolysis activity, primarily releasing mannobiose and mannotriose. Characterization of GmuG using locust bean gum as a substrate revealed an optimum temperature of 50-55 °C and pH optima at 5.0 and 9.0. This study highlights the potential of B. subtilis F6 and its mannanase GmuG for efficient PKM fibre hydrolysis, and provides insights into their application in the valorization of mannan-rich bioresources.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"11 1","pages":"113"},"PeriodicalIF":4.3,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669640/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia-Yu Jiang, Dai Xue, Jin-Song Gong, Qin-Xin Zheng, Yue-Sheng Zhang, Chang Su, Zheng-Hong Xu, Jin-Song Shi
{"title":"A comprehensive review on microbial hyaluronan-degrading enzymes: from virulence factors to biotechnological tools.","authors":"Jia-Yu Jiang, Dai Xue, Jin-Song Gong, Qin-Xin Zheng, Yue-Sheng Zhang, Chang Su, Zheng-Hong Xu, Jin-Song Shi","doi":"10.1186/s40643-024-00832-x","DOIUrl":"10.1186/s40643-024-00832-x","url":null,"abstract":"<p><p>Hyaluronan (HA), a natural high molecular weight polysaccharide, has extensive applications in cosmetology and medical treatment. Hyaluronan-degrading enzymes (Hyals) act as molecular scissors that cleave HA by breaking the glucosidic linkage. Hyals are present in diverse organisms, including vertebrates, invertebrates and microorganisms, and play momentous roles in biological processes. In recent years, microbial Hyals (mHyals) have gained considerable attention for their exceptional performance in the production and processing of HA. Moreover, the applications of mHyals have been greatly extended to various biomedical fields. To explore the potential applications of mHyals, a thorough comprehension is imperative. In this context, this review systematically summarizes the sources, structures, mechanisms and enzymatic properties of mHyals and discusses their biological functions in host invasion, disease development, and regulation of intestinal flora. Furthermore, versatile applications inspired by their biological functions in medicine development, molecular biology, and industrial biotechnology are comprehensively reviewed. Finally, prospects are presented to emphasize the importance of exploration, expression and characterization of mHyals and the necessity of excavating their potential in biotechnological fields.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"11 1","pages":"114"},"PeriodicalIF":4.3,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimized production of bacterioruberin from \"Haloferax marinum\" using one-factor-at-a-time and central composite design approaches.","authors":"Eui-Sang Cho, Chi Young Hwang, Myung-Ji Seo","doi":"10.1186/s40643-024-00834-9","DOIUrl":"10.1186/s40643-024-00834-9","url":null,"abstract":"<p><p>Haloarchaea represents a unique group of microorganisms that have adapted to thrive in high-salt environments. These microbes produce distinctive biomolecules, some of which exhibit extraordinary properties. One such biomolecule is bacterioruberin, a prominent red-pigmented C<sub>50</sub> carotenoid commonly found in halophilic archaea, renowned for its antioxidant properties and potential as a functional resource. This study aimed to enhance the culture conditions for optimal production of C<sub>50</sub> carotenoids, primarily bacterioruberin, using \"Haloferax marinum\" MBLA0078. The optimization process involved a combination of one-factor-at-a-time (OFAT) and statistical methodology. Under OFAT-optimized conditions, fed-batch fermentation, and response surface methodology (RSM) optimization, carotenoid production reached 0.954 mg/L, 2.80 mg/L, and 2.16 mg/L, respectively, in a 7-L laboratory-scale fermenter. Notably, RSM-optimized conditions led to a 12-fold increase in productivity (0.72 mg/L/day) compared to the basal DBCM2 medium (0.06 mg/L/day). These findings suggest that strain MBLA0078 holds significant promise for commercial-scale production of bacterioruberin.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"11 1","pages":"111"},"PeriodicalIF":4.3,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142852564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoyang Wang, Min Li, Mengting Li, Huoyan Hong, Kai Gao, Puya Zhao
{"title":"Non-affinity platform for processing knob-into-hole bispecific antibody.","authors":"Xiaoyang Wang, Min Li, Mengting Li, Huoyan Hong, Kai Gao, Puya Zhao","doi":"10.1186/s40643-024-00827-8","DOIUrl":"10.1186/s40643-024-00827-8","url":null,"abstract":"<p><p>Bispecific antibodies hold significant potential as next-generation biotherapeutics owing to their ability to simultaneously bind to two targets. However, the development of bispecific antibodies as biotherapeutics has been hindered by the high levels of byproducts produced, including both high molecular weight and low molecular weight variants. In addition, the inevitable expression of homodimers in host cells presents further obstacles to the commercial development of bispecific antibodies as therapeutics. These byproducts, which share similar physicochemical properties with the target, pose several challenges for downstream purification processes. In this study, we present a non-protein A purification platform that employ a one-step polishing chromatography to purify bispecific antibodies. Mixed-mode Capto adhere resin was used to capture the target protein at pH 7.90 ± 0.10, followed by anion exchange chromatography as a polishing step. Overall, the results of this two-step chromatography purification method demonstrated at final product purity of 98% as assessed by size-exclusion high-performance liquid chromatography (SEC-HPLC) and 98% by reversed-phase-high-performance liquid chromatography (RP-HPLC), with residual host cell proteins controlled at 10 ppm and an excellent recovery rate of approximately 60%. This study presents a non-protein A capture platform, offering a simplified, streamlined, and competitive alternative to conventional affinity chromatography.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"11 1","pages":"110"},"PeriodicalIF":4.3,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655889/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Afsaneh Mazaheri, Mohamad Reza Doosti, Mohammad Javad Zoqi
{"title":"Enhancing synthetic vinasse treatment efficiency using an integrated UASB-Modified Bardenpho Process.","authors":"Afsaneh Mazaheri, Mohamad Reza Doosti, Mohammad Javad Zoqi","doi":"10.1186/s40643-024-00830-z","DOIUrl":"10.1186/s40643-024-00830-z","url":null,"abstract":"<p><p>Vinasse poses considerable environmental problems due to its complex composition of organic matter, minerals, and toxic compounds. If discharged into the environment without treatment, it can cause adverse impacts on ecosystems. This research investigated the effectiveness of an integrated treatment system involving an upflow anaerobic sludge blanket (UASB) reactor and the modified Bardenpho process (MBP) for purifying synthetic vinasse. The study lasted for 167 days, during which the integrated UASB-MBP system processed untreated synthetic vinasse with organic loading rates (OLR) ranging from 1.6 to 12.5 kgCOD/m<sup>3</sup> day. The UASB-MBP system impressively achieved a COD removal efficiency of 99.41%. Removal efficiencies of approximately 98.14, 99.91, and 99.63% were also achieved for total nitrogen (TN), total phosphorus (TP) and total ammonium (NH<sub>4</sub><sup>+</sup>-N), respectively. The final discharge was 51.06 mg/L. The concentrations of NH<sub>4</sub><sup>+</sup>-N and TN in the outflow of the settlement tank were 0.8-1.2 mg/L and 5.1-7.9 mg/L, respectively. Optimal performance was achieved when the HRT and nitrate recycle ratio were 15.5 h and 200%, respectively. The temperature was kept in the mesophilic range (33-35 °C) during the experiments. These results underscores the potential of the integrated UASB reactor and modified Bardenpho process to provide an effective and eco-friendly approach for concurrent removal of COD and nutrients from vinasse treatment, offering broad prospects for implementation in wastewater treatment.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"11 1","pages":"109"},"PeriodicalIF":4.3,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635072/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142806247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aisha Nawaf Al Balawi, Jayda G Eldiasty, Sahar Abd-El Razik Mosallam, Alaa R El-Alosey, Alaa Elmetwalli
{"title":"Assessing multi-target antiviral and antioxidant activities of natural compounds against SARS-CoV-2: an integrated in vitro and in silico study.","authors":"Aisha Nawaf Al Balawi, Jayda G Eldiasty, Sahar Abd-El Razik Mosallam, Alaa R El-Alosey, Alaa Elmetwalli","doi":"10.1186/s40643-024-00822-z","DOIUrl":"10.1186/s40643-024-00822-z","url":null,"abstract":"<p><p>There is an urgent need for preventive and therapeutic drugs to effectively treat and prevent viral diseases from resurfacing as they emerge during the COVID-19 pandemic. This study aims to assess the antiviral effects of four natural compounds commonly used in traditional medicine to treat SARS-CoV-2 infection. A cytotoxicity, dose-dependent, and plaque reduction assay was performed on Vero CCL-81 cells to figure out their effects on the cells. Quantification of cytokines was assessed. In silico analysis for the selected compound was also evaluated. Results revealed that the compounds could disrupt the viral replication cycle through direct inhibition of the virus or immune system stimulation. The cytotoxicity assay results revealed that the compounds were well tolerated by the cells, indicating that the compounds were not toxic to the cells. This study evaluated the antioxidant capacities of propolis, curcumin, quercetin, and ginseng using ABTS, FRAP, and CUPRAC assays, revealing that propolis exhibited the highest antioxidant activity of ABTS with 1250.40 ± 17.10 μmol Trolox eq/g, with FRAP values reaching 1200.55 ± 15.90 μmol Fe<sup>2</sup>⁺ eq/g and CUPRAC values of 1150.80 ± 14.20 μmol Trolox eq/g at 1000 µg/mL, highlighting its potential as a potent natural antioxidant. The results of the plaque reduction assay revealed that the compounds could reduce the size and number of plaques, indicating that the compounds could inhibit the virus replication cycle. Subsequently, using molecular docking to analyze the effect of propolis, curcumin, quercetin, and ginseng as inhibitors, it was unveiled that the four compounds are likely to have the potential to inhibit the protease activity, spike protein S1, and RNA polymerase of SARS-CoV-2 and the virus titer was reduced by 100% after post-infection using propolis as an inhibitor control.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"11 1","pages":"108"},"PeriodicalIF":4.3,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}