Assessing multi-target antiviral and antioxidant activities of natural compounds against SARS-CoV-2: an integrated in vitro and in silico study.

IF 4.3 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Aisha Nawaf Al Balawi, Jayda G Eldiasty, Sahar Abd-El Razik Mosallam, Alaa R El-Alosey, Alaa Elmetwalli
{"title":"Assessing multi-target antiviral and antioxidant activities of natural compounds against SARS-CoV-2: an integrated in vitro and in silico study.","authors":"Aisha Nawaf Al Balawi, Jayda G Eldiasty, Sahar Abd-El Razik Mosallam, Alaa R El-Alosey, Alaa Elmetwalli","doi":"10.1186/s40643-024-00822-z","DOIUrl":null,"url":null,"abstract":"<p><p>There is an urgent need for preventive and therapeutic drugs to effectively treat and prevent viral diseases from resurfacing as they emerge during the COVID-19 pandemic. This study aims to assess the antiviral effects of four natural compounds commonly used in traditional medicine to treat SARS-CoV-2 infection. A cytotoxicity, dose-dependent, and plaque reduction assay was performed on Vero CCL-81 cells to figure out their effects on the cells. Quantification of cytokines was assessed. In silico analysis for the selected compound was also evaluated. Results revealed that the compounds could disrupt the viral replication cycle through direct inhibition of the virus or immune system stimulation. The cytotoxicity assay results revealed that the compounds were well tolerated by the cells, indicating that the compounds were not toxic to the cells. This study evaluated the antioxidant capacities of propolis, curcumin, quercetin, and ginseng using ABTS, FRAP, and CUPRAC assays, revealing that propolis exhibited the highest antioxidant activity of ABTS with 1250.40 ± 17.10 μmol Trolox eq/g, with FRAP values reaching 1200.55 ± 15.90 μmol Fe<sup>2</sup>⁺ eq/g and CUPRAC values of 1150.80 ± 14.20 μmol Trolox eq/g at 1000 µg/mL, highlighting its potential as a potent natural antioxidant. The results of the plaque reduction assay revealed that the compounds could reduce the size and number of plaques, indicating that the compounds could inhibit the virus replication cycle. Subsequently, using molecular docking to analyze the effect of propolis, curcumin, quercetin, and ginseng as inhibitors, it was unveiled that the four compounds are likely to have the potential to inhibit the protease activity, spike protein S1, and RNA polymerase of SARS-CoV-2 and the virus titer was reduced by 100% after post-infection using propolis as an inhibitor control.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"11 1","pages":"108"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602940/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-024-00822-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

There is an urgent need for preventive and therapeutic drugs to effectively treat and prevent viral diseases from resurfacing as they emerge during the COVID-19 pandemic. This study aims to assess the antiviral effects of four natural compounds commonly used in traditional medicine to treat SARS-CoV-2 infection. A cytotoxicity, dose-dependent, and plaque reduction assay was performed on Vero CCL-81 cells to figure out their effects on the cells. Quantification of cytokines was assessed. In silico analysis for the selected compound was also evaluated. Results revealed that the compounds could disrupt the viral replication cycle through direct inhibition of the virus or immune system stimulation. The cytotoxicity assay results revealed that the compounds were well tolerated by the cells, indicating that the compounds were not toxic to the cells. This study evaluated the antioxidant capacities of propolis, curcumin, quercetin, and ginseng using ABTS, FRAP, and CUPRAC assays, revealing that propolis exhibited the highest antioxidant activity of ABTS with 1250.40 ± 17.10 μmol Trolox eq/g, with FRAP values reaching 1200.55 ± 15.90 μmol Fe2⁺ eq/g and CUPRAC values of 1150.80 ± 14.20 μmol Trolox eq/g at 1000 µg/mL, highlighting its potential as a potent natural antioxidant. The results of the plaque reduction assay revealed that the compounds could reduce the size and number of plaques, indicating that the compounds could inhibit the virus replication cycle. Subsequently, using molecular docking to analyze the effect of propolis, curcumin, quercetin, and ginseng as inhibitors, it was unveiled that the four compounds are likely to have the potential to inhibit the protease activity, spike protein S1, and RNA polymerase of SARS-CoV-2 and the virus titer was reduced by 100% after post-infection using propolis as an inhibitor control.

评估天然化合物对 SARS-CoV-2 的多靶点抗病毒和抗氧化活性:体外和硅学综合研究。
目前迫切需要预防和治疗药物,以有效治疗和防止 COVID-19 大流行期间出现的病毒性疾病死灰复燃。本研究旨在评估四种常用于治疗 SARS-CoV-2 感染的传统医药天然化合物的抗病毒效果。在 Vero CCL-81 细胞上进行了细胞毒性、剂量依赖性和斑块减少试验,以了解它们对细胞的影响。还对细胞因子的定量进行了评估。此外,还对所选化合物进行了硅学分析。结果显示,这些化合物可以通过直接抑制病毒或刺激免疫系统来破坏病毒复制周期。细胞毒性检测结果显示,细胞对化合物的耐受性良好,表明化合物对细胞无毒性。这项研究使用 ABTS、FRAP 和 CUPRAC 分析法评估了蜂胶、姜黄素、槲皮素和人参的抗氧化能力,结果显示蜂胶的 ABTS 抗氧化活性最高,为 1250.40 ± 17.10 μmol Trolox eq/g,FRAP 值达到 1200.55 ± 15.90 μmol Fe2⁺ eq/g,CUPRAC 值在 1000 µg/mL 时为 1150.80 ± 14.20 μmol Trolox eq/g,凸显了蜂胶作为一种强效天然抗氧化剂的潜力。斑块缩小试验结果表明,这些化合物可以缩小斑块的大小并减少其数量,这表明这些化合物可以抑制病毒的复制周期。随后,利用分子对接法分析了蜂胶、姜黄素、槲皮素和人参作为抑制剂的效果,结果发现这四种化合物可能具有抑制SARS-CoV-2蛋白酶活性、尖峰蛋白S1和RNA聚合酶的潜力,而且以蜂胶作为抑制剂对照,病毒滴度在感染后降低了100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresources and Bioprocessing
Bioresources and Bioprocessing BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
8.70%
发文量
118
审稿时长
13 weeks
期刊介绍: Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信