BiointerphasesPub Date : 2023-11-01DOI: 10.1116/6.0003028
Antra Patel, Bhavana Bhavanam, Trevor Keenan, Venkat Maruthamuthu
{"title":"Integrating shear flow and trypsin treatment to assess cell adhesion strength.","authors":"Antra Patel, Bhavana Bhavanam, Trevor Keenan, Venkat Maruthamuthu","doi":"10.1116/6.0003028","DOIUrl":"10.1116/6.0003028","url":null,"abstract":"<p><p>Cell adhesion is of fundamental importance in cell and tissue organization and for designing cell-laden constructs for tissue engineering. Prior methods to assess cell adhesion strength for strongly adherent cells using hydrodynamic shear flow either involved the use of specialized flow devices to generate high shear stress or used simpler implementations like larger height parallel plate chambers that enable multihour cell culture but generate low wall shear stress and are, hence, more applicable for weakly adherent cells. Here, we propose a shear flow assay for adhesion strength assessment of strongly adherent cells that employs off-the-shelf parallel plate chambers for shear flow as well as simultaneous trypsin treatment to tune down the adhesion strength of cells. We implement the assay with a strongly adherent cell type and show that wall shear stress in the 0.07-7 Pa range is sufficient to dislodge the cells with simultaneous trypsin treatment. Imaging of cells over a square centimeter area allows cell morphological analysis of hundreds of cells. We show that the cell area of cells that are dislodged, on average, does not monotonically increase with wall shear stress at the higher end of wall shear stresses used and suggest that this can be explained by the likely higher resistance of high circularity cells to trypsin digestion. The adhesion strength assay proposed can be used to assess the adhesion strength of both weakly and strongly adherent cell types and has the potential to be adapted for substrate stiffness-dependent adhesion strength assessment in mechanobiology studies.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721339/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138798736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-09-01DOI: 10.1116/6.0003059
Andrew P Carpenter, Thaddeus W Golbek
{"title":"\"Nonlinear\" pursuit of understanding pollutant accumulation and chemistry at environmental and biological interfaces.","authors":"Andrew P Carpenter, Thaddeus W Golbek","doi":"10.1116/6.0003059","DOIUrl":"10.1116/6.0003059","url":null,"abstract":"<p><p>Over the past few decades, the public recognition of the prevalence of certain classes of pollutants, such as perfluoroalkyl substances and nanoplastics, within the environment, has sparked growing concerns over their potential impact on environmental and human health. Within both environmental and biological systems, the adsorption and structural organization of pollutants at aqueous interfaces can greatly impact the chemical reactivity and transformation. Experimentally probing chemical behavior at interfaces can often pose a problem due to bulk solvated molecules convoluting molecular signatures from interfacial molecules. To solve this problem, there exist interface-specific nonlinear spectroscopy techniques that can directly probe both macroscopic planar interfaces and nanoplastic interfaces in aqueous environments. These techniques can provide essential information such as chemical adsorption, structure, and reactivity at interfaces. In this perspective, these techniques are presented with obvious advantages for studying the chemical properties of pollutants adsorbed to environmental and biological interfaces.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41098918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-09-01DOI: 10.1116/6.0002618
Weichen Yuan, Fangkun Zhao, Xiaoyu Liu, Jun Xu
{"title":"Development of corneal contact lens materials and current clinical application of contact lenses: A review.","authors":"Weichen Yuan, Fangkun Zhao, Xiaoyu Liu, Jun Xu","doi":"10.1116/6.0002618","DOIUrl":"10.1116/6.0002618","url":null,"abstract":"<p><p>Unlike conventional glasses, corneal contact lenses (CLs) can directly contact the surface of the tear film through the application of biopolymer materials, to achieve therapeutic and cosmetic purposes. Since the advent of polymethylmethacrylate, a material that has gained widespread use and attention, statistically, there are now more than 150 × 106 people around the world who wear corneal contact lenses. However, the associated complications caused by the interaction of contact lenses with the ocular surface, tear film, endogenous and environmental microorganisms, and components of the solution affect nearly one-third of the wearer population. The application of corneal contact lenses in correcting vision and myopia control has been widely recognized. With the development of related materials, corneal contact lenses are applied to the treatment of ocular surface diseases, including corneal bandage lenses, drug-loaded corneal contact lenses, biosensors, and other new products, while minimizing the side effects associated with CL wear. This paper summarized the development history and material properties of CLs, focused on the current main clinical applications and mechanisms, as well as clarified the possible complications in wearing therapeutic contact lenses and the direction for improvement in the future.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41093449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-09-01DOI: 10.1116/6.0003104
Onur Apul, Caitlin Howell, M Dilara Hatinoglu
{"title":"Per- and polyfluoroalkyl substances (PFAS) at the interface of biological and environmental systems.","authors":"Onur Apul, Caitlin Howell, M Dilara Hatinoglu","doi":"10.1116/6.0003104","DOIUrl":"10.1116/6.0003104","url":null,"abstract":"","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41121946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-09-01DOI: 10.1116/6.0003084
Alex Cheng, Ying Liu, Hai-Qing Song
{"title":"Elevating nucleic acid delivery via a stable anionic peptide-dextran ternary system.","authors":"Alex Cheng, Ying Liu, Hai-Qing Song","doi":"10.1116/6.0003084","DOIUrl":"10.1116/6.0003084","url":null,"abstract":"<p><p>Nucleic acid-based therapies hold promise for treating previously intractable diseases but require effective delivery vectors to protect the therapeutic agents and ensure efficient transfection. Cationic polymeric vectors are particularly notable for their adaptability, high transfection efficiency, and low cost, but their positive charge often attracts blood proteins, causing aggregation and reduced transfection efficiency. Addressing this, we designed an anionic peptide-grafted dextran (Dex-LipE5H) to serve as a cross-linkable coating to bolster the stability of cationic polymer/nucleic acid complexes. The Dex-LipE5H was synthesized through a Michael addition reaction, combining an anionic peptide (LipE5H) with dextran modified by divinyl sulfone. We demonstrated Dex-lipE5H utility in a novel ternary nucleic acid delivery system, CDex-LipE5H/PEI/nucleic acid. CDex-LipE5H/PEI/nucleic acid demonstrated lower cytotoxicity and superior anti-protein absorption ability compared to PEI/pDNA and Dex-LipE5H/PEI/pDNA. Most notably, the crosslinked CDex-LipE5H/PEI/pDNA demonstrated remarkable transfection performance in HepG2 cells, which poses significant transfection challenges, even in a medium with 20% serum. This system's effective siRNA interference performance was further validated through a PCSK9 gene knockdown assay. This investigation provides novel insights and contributes to the design of cost-effective, next-generation nucleic acid delivery systems with enhanced blood stability and transfection efficiency.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41121945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-09-01DOI: 10.1116/6.0002963
Mary Jane Shultz, Patrick Bisson, Jing Wang, Joam Marmolejos, Rebecca G Davies, Emma Gubbins, Ziqing Xiong
{"title":"High phase resolution: Probing interactions in complex interfaces with sum frequency generation.","authors":"Mary Jane Shultz, Patrick Bisson, Jing Wang, Joam Marmolejos, Rebecca G Davies, Emma Gubbins, Ziqing Xiong","doi":"10.1116/6.0002963","DOIUrl":"10.1116/6.0002963","url":null,"abstract":"<p><p>An often-quoted statement attributed to Wolfgang Pauli is that God made the bulk, but the surface was invented by the devil. Although humorous, the statement really reflects frustration in developing a detailed picture of a surface. In the last several decades, that frustration has begun to abate with numerous techniques providing clues to interactions and reactions at surfaces. Often these techniques require considerable prior knowledge. Complex mixtures on irregular or soft surfaces-complex interfaces-thus represent the last frontier. Two optical techniques: sum frequency generation (SFG) and second harmonic generation (SHG) are beginning to lift the veil on complex interfaces. Of these techniques, SFG with one excitation in the infrared has the potential to provide exquisite molecular- and moiety-specific vibrational data. This Perspective is intended both to aid newcomers in gaining traction in this field and to demonstrate the impact of high-phase resolution. It starts with a basic description of light-induced surface polarization that is at the heart of SFG. The sum frequency is generated when the input fields are sufficiently intense that the interaction is nonlinear. This nonlinearity represents a challenge for disentangling data to reveal the molecular-level picture. Three, high-phase-resolution methods that reveal interactions at the surface are described.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71410558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-09-01DOI: 10.1116/6.0003009
Mia-Rose Kayaian, Morgan J Hawker
{"title":"Using 1,8-cineole plasma with both pulsed and continuous depositions to modify commercially available wound dressing materials.","authors":"Mia-Rose Kayaian, Morgan J Hawker","doi":"10.1116/6.0003009","DOIUrl":"10.1116/6.0003009","url":null,"abstract":"<p><p>The current clinical standards for infected chronic wounds are oral and topical antibiotics. These strategies are problematic because antibiotic resistance can occur with prolonged use. As an alternative to clinical methods, essential oils show promise in preventing bacterial growth. Specifically, 1,8-cineole-an active component in eucalyptus oil-exhibits antifungal, anti-inflammatory, and antibacterial properties. Applying 1,8-cineole directly onto a wound is challenging, however, due to its volatile nature. To combat this issue, plasma-enhanced chemical vapor deposition (PECVD) has been established as a method to deposit a stable 1,8-cineole-derived film on model surfaces (e.g., glass and electrospun polystyrene nanofibers). The current study represents an extension of previous work, where both pulsed and continuous 1,8-cineole plasmas were used to deposit a 1,8-cineole-derived film on two commercially available wound dressings. Three surface analyses were conducted to characterize the plasma-modified dressings. First, water contact angle goniometry data demonstrated a decrease in hydrofiber wettability after treatment. Through scanning electron spectroscopy, the surface morphology of both materials did not change upon treatment. When comparing pulsed and continuous treatments, deconvolution of high-resolution C1s x-ray photoelectron spectra showed no differences in functional group retention. Importantly, the chemical compositions of treated wound dressings were different compared to untreated materials. Overall, this work seeks to elucidate how different PECVD parameters affect the surface properties of wound dressings. Understanding these parameters represents a key step toward developing alternative chronic wound therapies.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586874/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-07-01DOI: 10.1116/6.0002796
Simin Moavenzadeh Ghaznavi, Charity Zimmerman, Molly E Shea, Jean D MacRae, John M Peckenham, Caroline L Noblet, Onur G Apul, A Dianne Kopec
{"title":"Management of per- and polyfluoroalkyl substances (PFAS)-laden wastewater sludge in Maine: Perspectives on a wicked problem.","authors":"Simin Moavenzadeh Ghaznavi, Charity Zimmerman, Molly E Shea, Jean D MacRae, John M Peckenham, Caroline L Noblet, Onur G Apul, A Dianne Kopec","doi":"10.1116/6.0002796","DOIUrl":"https://doi.org/10.1116/6.0002796","url":null,"abstract":"<p><p>This article discusses the challenges and potential solutions for managing wastewater sludge that contains per- and polyfluoroalkyl substances (PFAS), using the experience in Maine as a guide toward addressing the issue nationally. Traditional wastewater treatment, designed to remove excess organic waste and nutrients, does not eliminate persistent toxic pollutants like PFAS, instead partitioning the chemicals between discharged effluent and the remaining solids in sludge. PFAS chemistry, the molecular size, the alkyl chain length, fluorine saturation, the charge of the head group, and the composition of the surrounding matrix influence PFAS partitioning between soil and water. Land application of sludge, incineration, and storage in a landfill are the traditional management options. Land application of Class B sludge on agricultural fields in Maine peaked in the 1990s, totaling over 2 × 106 cu yd over a 40-year period and has contaminated certain food crops and animal forage, posing a threat to the food supply and the environment. Additional Class A EQ (Exceptional Quality) composted sludge was also applied to Maine farmland. The State of Maine banned the land application of wastewater sludge in August 2022. Most sludge was sent to the state-owned Juniper Ridge Landfill, which accepted 94 270 tons of dewatered sludge in 2022, a 14% increase over 2019. Between 2019 and 2022, the sum of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) concentrations in sludge sent to the landfill ranged from 1.2 to 104.9 ng/g dw. In 2022, the landfill generated 71.6 × 106 l of leachate. The concentration of sum of six PFAS in the leachate increased sixfold between 2021 and 2022, reaching 2 441 ng/l. The retention of PFAS within solid-waste landfills and the potential for long-term release of PFAS through liners into groundwater require ongoing monitoring. Thermal treatment, incineration, or pyrolysis can theoretically mineralize PFAS at high temperatures, yet the strong C-F bond and reactivity of fluorine require extreme temperatures for complete mineralization. Future alternatives may include interim options such as preconditioning PFAS with nonpolar solvents prior to immobilization in landfills, removing PFAS from leachate, and interrupting the cycle of PFAS moving from landfill, via leachate, to wastewater treatment, and then back to the landfill via sludge. Long-term solutions may involve destructive technologies such as electron beam irradiation, electrochemical advanced oxidation, or hydrothermal liquefaction. The article highlights the need for innovative and sustainable solutions for managing PFAS-contaminated wastewater sludge.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10054731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-07-01DOI: 10.1116/6.0002820
Christine Kern, Stefanie Kern, Anja Henss, Marcus Rohnke
{"title":"Secondary ion mass spectrometry for bone research.","authors":"Christine Kern, Stefanie Kern, Anja Henss, Marcus Rohnke","doi":"10.1116/6.0002820","DOIUrl":"10.1116/6.0002820","url":null,"abstract":"<p><p>The purpose of this Tutorial is to highlight the suitability of time-of-flight secondary ion mass spectrometry (ToF-SIMS) and OrbiTrap™ SIMS (Orbi-SIMS) in bone research by introducing fundamentals and best practices of bone analysis with these mass spectrometric imaging (MSI) techniques. The Tutorial includes sample preparation, determination of best-suited measurement settings, data acquisition, and data evaluation, as well as a brief overview of SIMS applications in bone research in the current literature. SIMS is a powerful analytical technique that allows simultaneous analysis and visualization of mineralized and nonmineralized bone tissue, bone marrow as well as implanted biomaterials, and interfaces between bone and implants. Compared to histological staining, which is the standard analytical procedure in bone research, SIMS provides chemical imaging of nonstained bone sections that offers insights beyond what is conventionally obtained. The Tutorial highlights the versatility of ToF- and Orbi-SIMS in addressing important questions in bone research. By illustrating the value of these MSI techniques, it demonstrates how they can contribute to advance progress in bone research.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10053657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-07-01DOI: 10.1116/6.0002659
João Moura Neto, Lais Medeiros Cardoso, Taisa Nogueira Pansani, Larissa M S C Raucci, Carlos Alberto de Souza Costa, Fernanda G Basso
{"title":"Influence of titanium and zirconia substrates on the synthesis of inflammatory mediators.","authors":"João Moura Neto, Lais Medeiros Cardoso, Taisa Nogueira Pansani, Larissa M S C Raucci, Carlos Alberto de Souza Costa, Fernanda G Basso","doi":"10.1116/6.0002659","DOIUrl":"https://doi.org/10.1116/6.0002659","url":null,"abstract":"<p><p>The repair and homeostasis of peri-implant tissues depend on several factors such as the local presence of pathogenic bacteria and their products. Among other events, peri-implant tissue response is also related to the implant material used, which interferes with cells and extracellular matrix interactions, affecting the osseointegration process. In this study, the influence of zirconia (Zr) and titanium (Ti) substrates on the response of preosteoblasts (MC3T3) and murine macrophages (RAW 264.7) exposed to lipopolysaccharide (LPS, P. gingivalis) was evaluated. Zr and Ti disks were obtained and subjected to surface roughness standardization, which was analyzed by scanning electronic microscopy (SEM). The cells were subsequently cultured on Zr and Ti surfaces in AlphaMEM culture medium for 24 h, followed by LPS stimulus for 4 h. The production of reactive oxygen species (ROS) and gene expression of inflammatory markers were determined. SEM images showed that Ti disks exhibited higher surface roughness than that of Zr disks. Cells that seeded onto Ti and Zr had increased expression of inflammatory mediators and ROS production in the presence of LPS; however, such cell responses were more evident for Ti disks. These data indicate that contact of cells with Zr surfaces may lead to a lower inflammatory potential than Ti surfaces. Elucidation of the inflammatory response triggered by LPS for cells in contact with titanium and zirconia may contribute to the selection of materials for installation of osseointegrated implants.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10047138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}