{"title":"Organic photovoltaic biomaterial with fullerene derivatives for near-infrared light sensing in neural cells.","authors":"Bowei Yuan, Xue Jiang, Zijun Xie, Xuanjun Zhang, Jiaxin Zhang, Jing Hong","doi":"10.1116/6.0003279","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal degenerative diseases, which can lead to photoreceptor cell apoptosis, have now become the leading irreversible cause of blindness worldwide. In this study, we developed an organic photovoltaic biomaterial for artificial retinas, enabling neural cells to detect photoelectric stimulation. The biomaterial was prepared using a conjugated polymer donor, PCE-10, and a non-fullerene receptor, Y6, both known for their strong near-infrared light absorption capabilities. Additionally, a fullerene receptor, PC61BM, was incorporated, which possesses the ability to absorb reactive oxygen species. We conducted a comprehensive investigation into the microstructure, photovoltaic properties, and photothermal effects of this three-component photovoltaic biomaterial. Furthermore, we employed Rat adrenal pheochromocytoma cells (PC-12) as a standard neural cell model to evaluate the in vitro photoelectric stimulation effect of this photovoltaic biomaterial. The results demonstrate that the photovoltaic biomaterial, enriched with fullerene derivatives, can induce intracellular calcium influx in PC-12 cells under 630 nm (red light) and 780 nm (near-infrared) laser irradiation. Moreover, there were lower levels of oxidative stress and higher levels of mitochondrial activity compared to the non-PC61BM group. This photovoltaic biomaterial proves to be an ideal substrate for near-infrared photoelectrical stimulation of neural cells and holds promise for restoring visual function in patients with photoreceptor apoptosis.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0003279","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Retinal degenerative diseases, which can lead to photoreceptor cell apoptosis, have now become the leading irreversible cause of blindness worldwide. In this study, we developed an organic photovoltaic biomaterial for artificial retinas, enabling neural cells to detect photoelectric stimulation. The biomaterial was prepared using a conjugated polymer donor, PCE-10, and a non-fullerene receptor, Y6, both known for their strong near-infrared light absorption capabilities. Additionally, a fullerene receptor, PC61BM, was incorporated, which possesses the ability to absorb reactive oxygen species. We conducted a comprehensive investigation into the microstructure, photovoltaic properties, and photothermal effects of this three-component photovoltaic biomaterial. Furthermore, we employed Rat adrenal pheochromocytoma cells (PC-12) as a standard neural cell model to evaluate the in vitro photoelectric stimulation effect of this photovoltaic biomaterial. The results demonstrate that the photovoltaic biomaterial, enriched with fullerene derivatives, can induce intracellular calcium influx in PC-12 cells under 630 nm (red light) and 780 nm (near-infrared) laser irradiation. Moreover, there were lower levels of oxidative stress and higher levels of mitochondrial activity compared to the non-PC61BM group. This photovoltaic biomaterial proves to be an ideal substrate for near-infrared photoelectrical stimulation of neural cells and holds promise for restoring visual function in patients with photoreceptor apoptosis.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.