{"title":"有机改性水泥作为生物相容性基质与海洋模式生物界面的现象学研究。","authors":"Jinglun Zhao, Tao Yuan, Hui Huang, Xiaolin Lu","doi":"10.1116/6.0003811","DOIUrl":null,"url":null,"abstract":"<p><p>Organic modification can generally endow inorganic materials with novel and promotional characteristics to fit into new functionalities. In this paper, new cement-based composite materials, with Portland cement as the substrate and polyacrylamide (PAM, alone) and PAM/chitosan as the functional components mixed with cement (bulk modified) or served as the surface coating (surface modified), were prepared and engineered as sampling substrates for biofilm and coral co-culture. In comparison to the bulk modified substrate and pure cement material, the surface modified substrate showed a balanced mechanical property, considering both bending and compressive strengths and distinctive surface features toward facilitating biofilm and coral growth, as characterized by spectroscopic, morphological, mechanical, and biofilm and coral co-culture experiments. We, thus, believe that the as-prepared surface modified substrate has the very potential to be applied as a substitute/alternative for the conventional cement material in the construction and engineering of artificial facilities with ecological protection functions.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"19 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenomenological investigation of organic modified cements as biocompatible substrates interfacing model marine organisms.\",\"authors\":\"Jinglun Zhao, Tao Yuan, Hui Huang, Xiaolin Lu\",\"doi\":\"10.1116/6.0003811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organic modification can generally endow inorganic materials with novel and promotional characteristics to fit into new functionalities. In this paper, new cement-based composite materials, with Portland cement as the substrate and polyacrylamide (PAM, alone) and PAM/chitosan as the functional components mixed with cement (bulk modified) or served as the surface coating (surface modified), were prepared and engineered as sampling substrates for biofilm and coral co-culture. In comparison to the bulk modified substrate and pure cement material, the surface modified substrate showed a balanced mechanical property, considering both bending and compressive strengths and distinctive surface features toward facilitating biofilm and coral growth, as characterized by spectroscopic, morphological, mechanical, and biofilm and coral co-culture experiments. We, thus, believe that the as-prepared surface modified substrate has the very potential to be applied as a substitute/alternative for the conventional cement material in the construction and engineering of artificial facilities with ecological protection functions.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"19 5\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003811\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0003811","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Phenomenological investigation of organic modified cements as biocompatible substrates interfacing model marine organisms.
Organic modification can generally endow inorganic materials with novel and promotional characteristics to fit into new functionalities. In this paper, new cement-based composite materials, with Portland cement as the substrate and polyacrylamide (PAM, alone) and PAM/chitosan as the functional components mixed with cement (bulk modified) or served as the surface coating (surface modified), were prepared and engineered as sampling substrates for biofilm and coral co-culture. In comparison to the bulk modified substrate and pure cement material, the surface modified substrate showed a balanced mechanical property, considering both bending and compressive strengths and distinctive surface features toward facilitating biofilm and coral growth, as characterized by spectroscopic, morphological, mechanical, and biofilm and coral co-culture experiments. We, thus, believe that the as-prepared surface modified substrate has the very potential to be applied as a substitute/alternative for the conventional cement material in the construction and engineering of artificial facilities with ecological protection functions.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.