BiointerphasesPub Date : 2023-07-01DOI: 10.1116/6.0002772
Alex E Scearce, Caleb P Goossen, Rachel E Schattman, Ellen B Mallory, Jean D MaCrae
{"title":"Linking drivers of plant per- and polyfluoroalkyl substance (PFAS) uptake to agricultural land management decisions.","authors":"Alex E Scearce, Caleb P Goossen, Rachel E Schattman, Ellen B Mallory, Jean D MaCrae","doi":"10.1116/6.0002772","DOIUrl":"10.1116/6.0002772","url":null,"abstract":"<p><p>Widespread contamination of the per- and polyfluoroalkyl substance (PFAS) in agricultural areas is largely attributed to the application of sewage sludge in which the PFAS can be concentrated. This creates a pathway for these contaminants to enter the food chain and, by extension, causes human health and economic concerns. One barrier to managing land with PFAS contamination is the variation in reported plant uptake levels across studies. A review of the literature suggests that the variation in plant uptake is influenced by a host of factors including the composition of PFAS chemicals, soil conditions, and plant physiology. Factors include (1) the chemical components of the PFAS such as the end group and chain length; (2) drivers of soil sorption such as the presence of soil organic matter (SOM), multivalent cation concentration, pH, soil type, and micropore volume; and (3) crop physiological features such as fine root area, percentage of mature roots, and leaf blade area. The wide range of driving factors highlights a need for research to elucidate these mechanisms through additional experiments as well as collect more data to support refined models capable of predicting PFAS uptake in a range of cropping systems. A conceptual framework presented here links drivers of plant PFAS uptake found in the literature to phytomanagement approaches such as modified agriculture or phytoremediation to provide decision support to land managers.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9860371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-07-01DOI: 10.1116/6.0002698
Yogesh Kumar, Suman Dhami, Ravindra Pandey
{"title":"Theoretical study of electronic sum frequency generation spectroscopy to assess the buried interfaces.","authors":"Yogesh Kumar, Suman Dhami, Ravindra Pandey","doi":"10.1116/6.0002698","DOIUrl":"10.1116/6.0002698","url":null,"abstract":"<p><p>This article provides a comprehensive theoretical background of electronic sum frequency generation (ESFG), a second-order nonlinear spectroscopy technique. ESFG is utilized to investigate both exposed and buried interfaces, which are challenging to study using conventional spectroscopic methods. By overlapping two incident beams at the interface, ESFG generates a beam at the sum of their frequencies, allowing for the extraction of valuable interfacial molecular information such as molecular orientation and density of states present at interfaces. The unique surface selectivity of ESFG arises from the absence of inversion symmetry at the interfaces. However, detecting weak signals from interfaces requires the ultrafast lasers to generate a sufficiently strong signal. By understanding the theoretical foundations of ESFG presented in this article, readers can gain a solid grasp of the basics of ESFG spectroscopy.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9804044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultraflexible polyvinylidene fluoride film based amperometric enzyme-free sensor for selective detection of uric acid in a trace level.","authors":"Abhisek Maikap, Riju Karmakar, Ajit Kumar Meikap, Subhra Samanta","doi":"10.1116/6.0002792","DOIUrl":"https://doi.org/10.1116/6.0002792","url":null,"abstract":"<p><p>The present invention describes a novel flexible nanosensor for the electrochemical detection of uric acid (UA) present in urine. The synthesized graphite-boron nanocomposite with an average thickness of ∼32 nm was grown up on a flexible polyvinylidene fluoride film with an average thickness of ∼50 μm and it acts as a nonenzymatic sensor for UA. The developed flexible sensor showed a prominent reduction peak in cyclic voltammetry and amperometric response with the presence of different concentrations of aqueous UA solution. In the electrochemical study, the redox peak was generated near ∼-0.42 V with a detection limit of around ∼2.09 μM as the bottom level. The high robustness of the developed sensor originated from the polymeric film base and the rapid response time of ∼0.5 s for detecting UA present in human urine. The interference property of the sensor was confirmed in the presence of bilirubin and creatinine as an eventual reference toward selectivity. The phase and morphology of the sensor surface were extensively observed before and after sensing to comprehend the electrochemical interaction between the sensor and target molecules. The generated quantitative results of the integrated system were verified by testing known and unknown concentrations of UA solutions.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10114294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-07-01DOI: 10.1116/6.0002657
Qi Wang, Hao Fu, Xiaoyu Qi, Lei Zhang, Hongyan Ma
{"title":"Immobilization of horseradish peroxidase with zwitterionic polymer material for industrial phenolic removal.","authors":"Qi Wang, Hao Fu, Xiaoyu Qi, Lei Zhang, Hongyan Ma","doi":"10.1116/6.0002657","DOIUrl":"10.1116/6.0002657","url":null,"abstract":"<p><p>Horseradish peroxidase (HRP) is a hemoglobin composed of a single peptide chain that catalyzes the oxidation of various substrates such as phenol and aniline in the presence of hydrogen peroxide via its iron-porphyrin catalytic center. This enzyme is widely used in industrial phenol removal, food additives, biomedicine, and clinical test reagents due to its rapid reaction rate and obvious reaction outcomes. However, the large-scale use of HRP in industrial applications still faces numerous challenges, including activity, stability, and sustainability. This study demonstrates that when peroxidase is immobilized in zwitterionic polymer hydrogels, polycarboxybetaine (PCB) and polysulfobetaine (PSB), the properties of the enzyme are improved. PCB and PSB-embedded HRP exhibit a 6.11 and 1.53 times increase in Kcat/Km value, respectively, compared to the free enzyme. The immobilized enzyme also experiences increased activity over a range of temperatures and better tolerance to extreme pH and organic solvents, including formaldehyde. In addition, immobilized HRP exhibits excellent performance in storage and reproducibility. Remarkably, PCB-HRP still retains 80% of the initial activity after a 6-week storage period and can still attain the initial catalytic level of the free enzyme after six repeated cycles. It also removes 90% of phenol within 12 min, surpassing the current pharmacy on the market. These experimental results indicated that we have successfully designed a set of stable and efficient support substrates for horseradish peroxidase, which enhances its suitability for deployment in industrial applications.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9805524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-07-01DOI: 10.1116/6.0002697
Suman Dhami, Yogesh Kumar, Ravindra Pandey
{"title":"Development of electronic sum frequency generation spectrophotometer to assess the buried interfaces.","authors":"Suman Dhami, Yogesh Kumar, Ravindra Pandey","doi":"10.1116/6.0002697","DOIUrl":"10.1116/6.0002697","url":null,"abstract":"<p><p>The interfacial region between two bulk media in organic semiconductor based devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes, and organic photovoltaics, refers to the region where two different materials such as an organic material and an electrode come in contact with each other. Although the interfacial region contains a significantly smaller fraction of molecules compared to the bulk, it is the primary site where many photoinduced excited state processes occur, such as charge transfer, charge recombination, separation, energy transfer processes, etc. All such photoinduced processes have a dependence on molecular orientation and density of states at the interfaces, therefore having an understanding of the interfacial region is essential. However, conventional spectroscopic techniques, such as surface-enhanced Raman scattering, x-ray photoelectron spectroscopy, atomic force microscopy, etc., face limitations in probing the orientation and density of states of interfacial molecules. Therefore, there is a need for noninvasive techniques capable of efficiently investigating the interfaces. The electronic sum frequency generation (ESFG) technique offers an interface selectivity based on the principle that the second-order nonlinear susceptibility tensor, within the electric dipole approximation, is zero in the isotropic bulk but nonzero at interfaces. This selectivity makes ESFG a promising spectroscopy tool to probe the molecular orientation and density of states at the buried interface. For beginners interested in employing ESFG to study the density of states at the interface, a detailed description of the experimental setup is provided here.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9804040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-07-01DOI: 10.1116/6.0002756
Mehdi Tajvidi
{"title":"PFAS (per- and polyfluoroalkyl substance)-free molded fiber: The future is already here.","authors":"Mehdi Tajvidi","doi":"10.1116/6.0002756","DOIUrl":"https://doi.org/10.1116/6.0002756","url":null,"abstract":"<p><p>With renewed interest in food packaging materials that can be both recyclable and compostable and the environmental concerns about plastic pollution in the terrestrial and aquatic ecosystems, molded fiber food packaging is experiencing an unprecedented demand around the globe. However, the phase-out of per- and polyfluoroalkyl substances (PFASs), commonly used as a water/grease resistant agent in food contact molded materials in many jurisdictions, has posed a significant challenge to the industry. This perspective outlines a recently developed solution to replace PFASs through the application of a layer of cellulose nanofibrils on the surface of molded fiber objects.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10431246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-05-01DOI: 10.1116/6.0002746
Caleb P Goossen, Rachel E Schattman, Jean D MacRae
{"title":"Evidence of compost contamination with per- and polyfluoroalkyl substances (PFAS) from \"compostable\" food serviceware.","authors":"Caleb P Goossen, Rachel E Schattman, Jean D MacRae","doi":"10.1116/6.0002746","DOIUrl":"https://doi.org/10.1116/6.0002746","url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) have been used to waterproof and greaseproof food serviceware for decades. Health concerns about these compounds have drawn attention to the potential for contamination of the food system. Finished compost (n = 3) made from manure and food serviceware labeled \"compostable\" generated at a large fair was found to contain 12 or 13 of the 28 PFAS compounds sampled for, in concentrations ranging from 1.1 to 183 μg/kg (Σ28PFAS range = 209-455 μg/kg). Of note, perfluorooctanoic acid, a known carcinogen, was found at concentrations between 47.2 and 55.5 μg/kg. In contrast, fresh manure contained only perfluoroctanesulfonic acid at 3.7 μg/kg, and separated food waste from the fair composted with grass clippings and livestock bedding had no detectable PFAS in 2022, and Σ28PFAS = 9.6 μg/kg in 2019. Including compostable serviceware in compost likely contaminates the finished compost and threatens surrounding groundwater and surface waters, in addition to increasing potential crop uptake.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9626782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-05-01DOI: 10.1116/6.0002713
Xiaowei Lin, Nan Xu, Chen Li, Zhiyu Wu, Shengfu Chen, Yao Shi, Yi He
{"title":"Molecular simulation studies on a zwitterionic peptide-dendrimer conjugate for integrin αvβ3 binding.","authors":"Xiaowei Lin, Nan Xu, Chen Li, Zhiyu Wu, Shengfu Chen, Yao Shi, Yi He","doi":"10.1116/6.0002713","DOIUrl":"https://doi.org/10.1116/6.0002713","url":null,"abstract":"<p><p>Zwitterionic dendrimer is an effective carrier, which can restore the natural conformation of peptide segments for high bioaffinity by a hydrogen bond-induced conformational constraint approach. However, it is still unknown whether the approach is applicable for the dendrimers with different geometric sizes. Therefore, the characteristics of conjugates made from zwitterionic poly(amidoamine) (PAM) and the arginine-glycine-aspartic acid (RGD) peptide were examined to elucidate the effects of the geometric sizes of the PAM dendrimer on the conformational structure and stability of the peptide. The results show that the RGD fragments had almost the same structure and stability when conjugated with PAM(G3, G4, or G5) dendrimers. However, when conjugated with PAM(G1 or G2) dendrimers, the structural stability of these fragments was found to be much worse. Also, the structure and stability of RGD segments conjugated with PAM(G3, G4, or G5) were not affected when additional EK segments were inserted. Moreover, we observed that RGD fragments conjugated with PAM(G3, G4, or G5) dendrimers were structurally stable and similar when the concentration of NaCl was 0.15 and 0.5M. Furthermore, we show that PAM(G3, G4, or G5)-RGD conjugates bind strongly to integrin αvβ3.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9679422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-05-01DOI: 10.1116/6.0002633
Daniel J Graham, Lara J Gamble
{"title":"Back to the basics of time-of-flight secondary ion mass spectrometry data analysis of bio-related samples. II. Data processing and display.","authors":"Daniel J Graham, Lara J Gamble","doi":"10.1116/6.0002633","DOIUrl":"10.1116/6.0002633","url":null,"abstract":"<p><p>This is the second half of a two-part Tutorial on the basics of the time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of bio-related samples. Part I of this Tutorial series covers planning for a ToF-SIMS experiment, preparing and shipping samples, and collecting ToF-SIMS data. This Tutorial aims at helping the ToF-SIMS user to process, display, and interpret ToF-SIMS data. ToF-SIMS provides detailed chemical information about surfaces but comes with a steep learning. The purpose of this Tutorial is to provide the reader with a solid foundation in the ToF-SIMS data analysis.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9992894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiointerphasesPub Date : 2023-05-01DOI: 10.1116/6.0002736
Lanlan Qin, Gaobo Yu, Jian Zhou
{"title":"Coarse-grained simulations of lysozyme-silica-nanoparticle corona.","authors":"Lanlan Qin, Gaobo Yu, Jian Zhou","doi":"10.1116/6.0002736","DOIUrl":"https://doi.org/10.1116/6.0002736","url":null,"abstract":"<p><p>Protein coronas, formed by proteins and nanomaterials, have various applications in the biomedical field. Here, large-scale simulations of protein coronas have been carried out by an efficient mesoscopic coarse-grained method with the BMW-MARTINI force field. The effects of protein concentration, size of silica nanoparticles (SNPs), and ionic strength on the formation of lysozyme-SNP coronas are investigated at the microsecond time scale. Simulations results indicate that (i) an increase in the amount of lysozyme is favorable for the conformation stability of adsorbed lysozyme on SNPs. Moreover, the formation of ringlike and dumbbell-like aggregations of lysozyme can further reduce the conformational loss of lysozyme; (ii) for a smaller SNP, the increase of protein concentration exhibits a greater effect on the adsorption orientation of lysozyme. The dumbbell-like lysozyme aggregation is unfavorable for the stability of lysozyme's adsorption orientation; however, the ringlike lysozyme aggregation can enhance the orientation stability; (iii) the increase of ionic strength can reduce the conformation change of lysozyme and accelerate the aggregation of lysozyme during their adsorption process on SNPs. This work provides some insights into the formation of protein coronas and some valuable guidelines for the development of novel biomolecule-NP conjugates.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9513650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}