X. Lu, Yu Wang, Dawn Chingtung Au, W. Y. Chow, Siu Kan Law
{"title":"A Short Commentary of the Quality Control on Radix Salvia miltiorrhiza and its Application for COVID-19","authors":"X. Lu, Yu Wang, Dawn Chingtung Au, W. Y. Chow, Siu Kan Law","doi":"10.33263/briac134.316","DOIUrl":"https://doi.org/10.33263/briac134.316","url":null,"abstract":"Radix Salvia miltiorrhiza (Danshen) is a Chinese herbal used in China to treat irregular menstruation, dysmenorrhea, insomnia, swelling liver, and angina pectoris. It also has various pharmacological activities, including anti-inflammation, anti-oxidation, anti-tumor, anti-atherogenesis, and anti-diabetes. However, traditional Chinese medicine (TCM), e.g., Danshen, lacks quality control. Pesticide residues and heavy metals are the most important problems, although Danshen may cure many diseases, even SARS-CoV-2 in a COVID-19 pandemic. Hence, the present short commentary discusses the background of Danshen, quality management, and its application to COVID-19.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49049114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Profile Volatile Compounds in Essential Oils on Different Parts of Cardamom with Antioxidant Activity","authors":"","doi":"10.33263/briac134.328","DOIUrl":"https://doi.org/10.33263/briac134.328","url":null,"abstract":"Amomum compactum Soland Ex. Maton from the Zingiberaceae, known as Java cardamom in Indonesia, is a valuable medicinal plant because of its bioactivity. This study aims to identify and evaluate the bioactive compounds and antioxidant activity of Java cardamom parts (leaves, stems, rhizomes, fruits (pods and seeds)) to explore their bioactivity values. GC-MS analysis was used to identify the bioactive compounds of Java cardamom parts in essential oils. Antioxidant activity was carried out by two methods: DPPH and FRAP. GC-MS analysis of four parts of the Java cardamom obtained 47 compounds as monoterpenes (33), sesquiterpenes (9), hydrocarbons (1), fatty alcohols (1), fatty acids (1), fatty acid esters (1), and diterpenoids (1). 1.8-Cineol is the most dominant secondary metabolite and is found in every part of Java cardamom essential oil, with the highest content produced in Java cardamom steam essential oil (50.78%), followed by Java cardamom fruits essential oil (45.59%). Furthermore, the activity of DPPH and FRAP ranged from 19.07 (leaves) – 27.38 (stems) and 93.43 (stems) – 115.99 (fruits) mol TEAC/g FW. The maximum antioxidant activity is produced in Java cardamom fruit essential oil. Thus, it can be used as a source of producing metabolites as antioxidants in the pharmaceutical industry.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45754649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Environment on Mechanical Behavior of Thermosetting Composites Reinforced with Bio-filler (Orange Peel Particulate) Materials","authors":"","doi":"10.33263/briac134.312","DOIUrl":"https://doi.org/10.33263/briac134.312","url":null,"abstract":"The behavior of natural fiber depends upon different environmental conditions due to its hydrophilic nature. Therefore, this article has focused on the significant consequence of moisture absorption on the mechanical properties of bio-waste (orange peel) reinforced epoxy composites with different weight percentages (10%, 20%, and 30%) in different environmental conditions such as saline water treatment, steam treatment, and subzero temperature. After attaining saturation, the experiments were carried out by immersing the specimens in previously described environmental conditions—the percentage of moisture content in the fabricated composite increases with an increase in the filler loadings. The mechanical properties of environmentally affected composites were studied as per ASTM standards, and the same values were compared with the properties of the composite in normal environmental conditions. The cracked surface of the tested samples and morphology of orange peel particulates were analyzed by scanning electron microscope. X-ray diffraction and energy-dispersive spectroscopy (EDX) analysis also studied the characterization of orange peel particulates.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44799734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of Cobalt Substitution on the Structural, Optical Band Gap, and Photocatalytic Dye Degradation Properties of Spray Deposited SnO2Thin Films","authors":"","doi":"10.33263/briac134.321","DOIUrl":"https://doi.org/10.33263/briac134.321","url":null,"abstract":"Pure and cobalt substituted tin oxide thin films are successfully formed on a glass substrate using the simple spray pyrolysis technique. XRD patterns reveal the polycrystalline nature of the samples with tetragonal rutile structure. The shift in X-ray diffraction peak to a higher 2θ value and its subsequent contraction of the SnO2 rutile lattice along the c-axis manifests the infusion of the guest cobalt ions. Crystallite size and microstrain values are found to vary with cobalt substitution. SEM analysis shows the uniform dispersion of the nanoparticles in the prepared thin films. The optical band gap values are found to narrow down with cobalt substitution from 4.04 eV–3.93 eV. Photoluminescence study hints at the presence of intermediate states within the forbidden energy band gap of SnO2. Photocatalytic dye degradation of Methylene blue (MB) highlights the role of cobalt with a high photocatalytic activity of 86 % compared to other investigated thin films.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47397056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanisms Related to Inhibition of Fungal Biofilm Formation on Medical Device Coated with Poly(Methylmethacrylate-co-Dimethylacrylamide)","authors":"","doi":"10.33263/briac134.332","DOIUrl":"https://doi.org/10.33263/briac134.332","url":null,"abstract":"Candida albicans (C. albicans) are the most common cause of urinary fungal infections. C. albicans biofilms are of increasing clinical importance due to their resistance to antifungal therapy. Since the use of medical devices causes most hospital infections, polymeric coatings that reduce microorganisms adhesion and biofilm formation are considered an attractive strategy. In this work, the ability and possible mechanisms of poly(methylmethacrylate-co-dimethylacrylamide) (PMMDMA) to inhibit C. albicans biofilms on medical devices have been studied. Scanning electron microscopy was used to evaluate fungal adhesion at various pH conditions, while the surface roughness of the coated and uncoated catheters was analyzed by atomic force microscopy. The surface charge was assessed, and the contact angle was determined to evaluate the surface hydrophobicity. PMMDMA coated catheters showed reduced binding of C. albicans at all pH values studied and presented a hydrophilic contact angle of ϴ = 71°. Negative zeta potential values of PMMDMA enhanced the reduction in C. albicans binding. AFM images demonstrated a smoother and homogeneous surface of PMMDMA-coated catheters. Coating with PMMDMA provided a smoother, more hydrophilic, and negative-charged surface, contributing to a substantial reduction of C. albicans binding.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41526509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical Constituents, Medicinal, and Pharmacological Applications, and Toxicology of Fructus Zizyphi","authors":"","doi":"10.33263/briac134.331","DOIUrl":"https://doi.org/10.33263/briac134.331","url":null,"abstract":"Fructus Zizyphi refers to the fruits of Zizyphus jujuba plant, and this plant is geographically distributed in East Asia and South Europe. This plant belongs to the family Rhamnaceae, and this plant is a shrub of 10 m in height. This review aimed to focus on chemical constituents, medicinal and pharmacological applications, and the toxicology of Fructus Zizyphi. The major chemical constituents of Fructus Zizyphi are triterpenes and triterpene saponins. Fructus Zizyphi treats insomnia, increases body weight, strengthens body muscle, decreases body temperature, increases urine volume, accelerates women's period, calms and reinforces agents, chases phlegm, treats vision, skin inflammation, hepatitis, respiratory diseases, diabetes, gastric ulcer, and different skin wounds. The pharmacology of Fructus Zizyphi includes experimental pharmacology and clinical pharmacology. Experimental pharmacology includes antiallergenic, anti-inflammatory, analgesic, anti-hyperglycemic, anti-hypercholesterolemic, central nervous system depressant, immune stimulation, and platelet aggregation activities. Fructus Zizyphi ethanol extracts to mice in drinking water daily for 3 months without any effect on animal death, hematology, organ weight, or sperm secretion. Fructus Zizyphi was not mutagenic. Fructus Zizyphi declined gastric adenocarcinoma progress. Fructus Zizyphi without general precautions, drug connections; drug and laboratory test relations; teratogenic or non-teratogenic effects in pregnancy; nursing mothers; or pediatric use. In conclusion, Fructus Zizyphi had antiallergenic, anti-inflammatory, analgesic, anti-hyperglycemic, anti-hypercholesterolemic, central nervous system depressant, immune stimulation, platelet aggregation activities, and without any effect on animals death, hematology, organ weight or sperm secretion.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49623244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mathematical Modelling of Convective Diffusive Mass Transfer in Ferrofluids Concerning Targeted Drug Delivery","authors":"","doi":"10.33263/briac134.311","DOIUrl":"https://doi.org/10.33263/briac134.311","url":null,"abstract":"Magnetically targeted drug delivery systems have been gaining importance over recent years due to their efficiency and minimal side effects. Many techniques are proposed for delivering drugs to targeted sites within the human body. But magnetically targeted drug delivery surpasses because of its unique character and high efficiency. There are only a few theoretical analyses done by researchers addressing the hydrodynamic models of magnetic fluids in the blood vessel. This paper presents a mathematical model of the hydrodynamics of the fluid, blood flow, and convective diffusive mass transfer of the species. Here we have tried to analyze a drug delivery method for delivering a drug to a specific site in the body. For this analysis, we have considered a channel bounded by the tissue region where the drug is targeted. An exact analysis of unsteady convective diffusive solute transfer in a channel bounded by a tissue region under the influence of a magnetic field.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49481526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immunomodulatory and Apoptotic Effect of Cinnamaldehyde in HepG2 Cells","authors":"","doi":"10.33263/briac134.320","DOIUrl":"https://doi.org/10.33263/briac134.320","url":null,"abstract":"Hepatocellular carcinoma (HCC), associated with various clinicopathological features such as genetic mutations and viral infections, is the fifth most common cancer worldwide. In Asia and Africa, the incidence of HCC is the highest. Half of all cases of HCC are associated with hepatitis B viral infection, with a further 25% associated with the hepatitis C virus. The most widely used drug against liver cancer is Doxorubicin as a single agent or in combination with other 9 chemotherapeutics like Cisplatin. Since the normal hepatocytes are affected by the subsisting conventional chemotherapeutic drugs, the outcomes remain considerably low. Therefore, the field is longing for the discovery of new therapeutic agents without hepatotoxicity or with low hepatotoxicity. Recent studies discovered that an α, β-unsaturated aromatic aldehyde has anti-inflammatory, antiproliferative, and anti-apoptotic against the HepG2 cell line. This α, β-unsaturated aromatic aldehyde is cinnamaldehyde, an extensive component that is present in cinnamon essential oil and is also used as a flavoring agent in food, beverages, and perfume industries. Results showed that the cinnamaldehyde decreased the proliferation of HepG2 cells in a dose-dependent manner (MTT assay). We observed a significant increase in the levels of IL-1 β and a decrease in the levels of IL-10 after Cinnamaldehyde treatment. Cinnamaldehyde also increased the Caspase-3 activity in HepG2 cells significantly. The present study showed that cinnamaldehyde has strong potential as an anti-tumor agent against hepatocellular carcinoma cells.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43683403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Outlook of Covid-19 Curing through Structural and Electronic Properties of Natural Drugs","authors":"S. Shahriari, K. Zare, Fatemeh Mollaamin","doi":"10.33263/briac134.345","DOIUrl":"https://doi.org/10.33263/briac134.345","url":null,"abstract":"Humans and multiple species of animals must be infected by coronaviruses (positive-stranded RNA viruses) through enteric, respiratory, and central nervous system sickness with attractive targets for designing anti- Covid-19 conjunction. In this work, it has been investigated the compounds of luteolin-7- glucoside, curcumin, epicatechin-gallate, allicin, and zingerol as probable anti-pandemic Covid-19 receptors derived from medicinal plants. Anti-Covid-19 through the hydrogen bonding using the physicochemical features consisting of thermodynamic parameters, nuclear magnetic resonance analysis, and IR characteristics, of luteolin-7- glucoside, curcumin, epicatechin-gallate, allicin, and zingerol compounds binded to the fragment of Tyrosine-Methionine-Histidine as the selective area of the Covid-19, IR frequency and intensity of various normal modes of these structures have been estimated. The theoretical calculations were accomplished at different steps of theory to achieve the more accurate equilibrium geometrical consequences, and IR spectral analysis for each of the complex drugs of O-terminal or N-terminal auto-cleavage substrate were approved to clear the structural flexibility and substrate attaching of seven medicinal plants bonded to the active site of Covid-19 molecule. Comparing these compounds with two configurations prepares a new outlook for the design of substrate-based anti-targeting of Covid-19. This indicates a feasible model for designing a wide spectrum of anti-Covid-19 drugs. The compounds-based energy minimization of these materials has resulted in two more effectual lead compounds, N and O atoms, forming the hydrogen bonding (H-bonding) with potent anti- Covid-19. Finally, two medicinal ingredients of allicin, curcumin, luteolin-7- glucoside, and zingerol bonded to TMH have been directed to a Monte Carlo (MC) simulation and UV-Visible for estimating the absorbance of luteolin-7- glucoside, and epicatechin-gallate.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43729871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An in silico Molecular Docking and ADME Analysis of Naturally Derived Biomolecules against Xanthine Oxidase: A Novel Lead for Antihyperuricemia Treatment","authors":"","doi":"10.33263/briac134.327","DOIUrl":"https://doi.org/10.33263/briac134.327","url":null,"abstract":"Xanthine oxidase (XO) is the significant target enzyme for treating hyperuricemia, gout, and other related illnesses. These clinical problems can be alleviated to some extent by inhibiting the function of xanthine oxidase. Molecules derived from nature can play a key role in this. This study used naturally derived compounds with anticancer action to investigate the binding affinity with XO. Naturally derived molecules retrieved from NPACT (Naturally occurring Plant-based Anticancerous Compound-Activity-Target) database. Molecular docking studies and ADME (Absorption, Distribution, Metabolism, and Excretion) were analyzed. The result of molecular docking studies showed that the selected naturally derived molecules have a better binding affinity with XOthan the standard drug allopurinol. Furthermore, all the selected molecules satisfy the ADME descriptors and have no violation of Lipinski's rule of five. Based on these findings, 18 compounds were chosen for further research. This research will aid in the search for new xanthine oxidase (XO) inhibitor alternatives. Detailed successful in vitro and in vivo studies are needed to propose new drug molecules for treating hyperuricemia and its associated diseases.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43785844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}