{"title":"Hierarchical Collagen/Apatite Co-assembly for Injection of Mineralized Fibrillar Tissue Analogues.","authors":"Milena Lama, Marion Merle, Elora Bessot, Camila Bussola Tovani, Guillaume Laurent, Nicole Bouland, Halima Kerdjoudj, Thierry Azaïs, Guylaine Ducouret, Tissiana Bortolotto, Nadine Nassif","doi":"10.1021/acsbiomaterials.4c02115","DOIUrl":"10.1021/acsbiomaterials.4c02115","url":null,"abstract":"<p><p>Mineralized biological tissues rich in type I collagen (e.g., bone and dentin) exhibit complex anisotropic suprafibrillar organizations in which the organic and inorganic moieties are intimately coassembled over several length scales. Above a critical size, a defect in such tissue cannot be self-repaired. Biomimetic materials with a composition and microstructure similar to that of bone have been shown to favorably influence bone regeneration. This highlights the value of developing a similar formulation in an injectable form to enable minimally invasive techniques. Here, we report on the fabrication and application potential of an injectable collagen/CHA (carbonated hydroxyapatite) cell-free hydrogel. The organic part consists of spray-dried nondenatured and dense collagen microparticles, while the inorganic part consists of biomimetic apatite mineral. By mixing both powders at desired tissue-like ratios with an aqueous solvent in one step, spontaneous co-self-assembly occurs, leading to the formation of a mineralized matrix with suprafibrillar tissue-like features thanks to the induced liquid crystalline properties of collagen on one hand and apatite on the other hand. When injected into soft tissue, the mineralized collagen hydrogel free of chemical cross-linking agents exhibits suitable cohesion and is biocompatible. Preliminary in vitro tests in a tooth cavity model show its integration onto dentin with a biomimetic interface. Based on the results, this versatile injectable mineralized collagen hydrogel shows promising potential as a biomaterial for bone tissue repair and mineralized tissue-like ink for bioprinting applications.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"564-576"},"PeriodicalIF":5.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongkui Tang, Michal Levin, Olivia G Long, Claus D Eisenbach, Noy Cohen, Megan T Valentine
{"title":"Data-Driven Framework for the Prediction of PEGDA Hydrogel Mechanics.","authors":"Yongkui Tang, Michal Levin, Olivia G Long, Claus D Eisenbach, Noy Cohen, Megan T Valentine","doi":"10.1021/acsbiomaterials.4c01762","DOIUrl":"10.1021/acsbiomaterials.4c01762","url":null,"abstract":"<p><p>Poly(ethylene glycol) diacrylate (PEGDA) hydrogels are biocompatible and photo-cross-linkable, with accessible values of elastic modulus ranging from kPa to MPa, leading to their wide use in biomedical and soft material applications. However, PEGDA gels possess complex microstructures, limiting the use of standard polymer theories to describe them. As a result, we lack a foundational understanding of how to relate their composition, processing, and mechanical properties. To address this need, we use a data-driven approach to develop an empirical predictive framework based on high-quality data obtained from uniaxial compression tests and validated using prior data found in the literature. The developed framework accurately predicts the hydrogel shear modulus and the strain-stiffening coefficient using only synthesis parameters, such as the molecular weight and initial concentration of PEGDA, as inputs. These results provide simple and reliable experimental guidelines for precisely controlling both the low-strain and high-strain mechanical responses of PEGDA hydrogels, thereby facilitating their design for various applications.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"259-267"},"PeriodicalIF":5.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Li, Dayan Li, Xue Wang, Ziyuan Zeng, Sara Pahlavan, Wei Zhang, Xi Wang, Kai Wang
{"title":"Progress in Biomaterials-Enhanced Vascularization by Modulating Physical Properties.","authors":"Hao Li, Dayan Li, Xue Wang, Ziyuan Zeng, Sara Pahlavan, Wei Zhang, Xi Wang, Kai Wang","doi":"10.1021/acsbiomaterials.4c01106","DOIUrl":"10.1021/acsbiomaterials.4c01106","url":null,"abstract":"<p><p>Sufficient vascular system and adequate blood perfusion is crucial for ensuring nutrient and oxygen supply within biomaterials. Actively exploring the optimal physical properties of biomaterials in various application scenarios has provided clues for enhancing vascularization within materials, leading to improved outcomes in tissue engineering and clinical translation. Here we focus on reviewing the physical properties of biomaterials, including pore structure, surface topography, and stiffness, and their effects on promoting vascularization. This angiogenic capability has the potential to provide better standardized research models and personalized treatment strategies for bone regeneration, wound healing, islet transplantation and cardiac repair.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"33-54"},"PeriodicalIF":5.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unlocking Osseointegration: Surface Engineering Strategies for Enhanced Dental Implant Integration.","authors":"Pankaj Sharma, Vedante Mishra, Sumit Murab","doi":"10.1021/acsbiomaterials.4c01178","DOIUrl":"10.1021/acsbiomaterials.4c01178","url":null,"abstract":"<p><p>Tooth loss is a prevalent problem faced by individuals of all ages across the globe. Various biomaterials, such as metals, bioceramics, polymers, composites of ceramics and polymers, etc., have been used for the manufacturing of dental implants. The success of a dental implant primarily depends on its osseointegration rate. The current surface modification techniques fail to imbibe the basics of tooth development, which can impart better mineralization and osseointegration. This can be improved by developing an understanding of the developmental pathways of dental tissue. Stimulating the correct signaling pathways through inductive material systems can bring about a paradigm shift in dental implant materials. The current review focuses on the developmental pathway and mineralization process that happen during tooth formation and how surface modifications can help in biomimetic mineralization, thereby enhancing osseointegration. We further describe the effect of dental implant surface modifications on mineralization, osteoinduction, and osseointegration; both <i>in vitro</i> and <i>in vivo</i>. The review will help us to understand the natural process of teeth development and mineralization and how the surface properties of dental implants can be further improved to mimic teeth development, in turn increasing osseointegration.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"67-94"},"PeriodicalIF":5.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Momoko Sakata, Yuki Imaizumi, Takumi Iwasawa, Kazunori Kato, Tatsuro Goda
{"title":"Semiconductor Transistor-Based Detection of Epithelial-Mesenchymal Transition via Weak Acid-Induced Proton Perturbation.","authors":"Momoko Sakata, Yuki Imaizumi, Takumi Iwasawa, Kazunori Kato, Tatsuro Goda","doi":"10.1021/acsbiomaterials.4c01707","DOIUrl":"10.1021/acsbiomaterials.4c01707","url":null,"abstract":"<p><p>Developing new detection methods for the epithelial-mesenchymal transition (EMT), where epithelial cells acquire mesenchymal traits, is crucial for understanding tissue development, cancer invasion, and metastasis. Conventional <i>in vitro</i> EMT evaluation methods like permeability measurements are time-consuming and low-throughput, while the transepithelial electrical resistance measurements struggle to differentiate between cell membrane damage and tight junction (TJ) loss and are affected by cell proliferation. In this study, we developed a pH perturbation method to detect TJ barrier disruption during epithelial EMT by sensing proton leakage induced by a weak acid using a pH-responsive semiconductor. Mardin-Darby canine kidney (MDCK) epithelial cell sheets cultured on an ion-sensitive field effect transistor's gate insulator were induced into EMT by exposure to the cytokine transforming growth factor-β1 (TGF-β). Our pH perturbation method successfully detected EMT in MDCK sheets at a TGF-β concentration one-tenth of that required for conventional methods. The high sensitivity and selectivity arise from using minimal protons as indicators of TJ barrier disruption. TGF-β-induced EMT detection results using our method align with EMT-related gene and protein expression data. In drug screening with EMT inhibitors, this novel method showed similar trends to conventional ones. The pH perturbation method enables highly sensitive, real-time EMT detection, contributing to elucidating biological phenomena and pharmaceutical development.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"586-594"},"PeriodicalIF":5.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Synthesis of Triazine-Based Hydrogel for Combined Targeted Doxorubicin Delivery and PI3K Inhibition.","authors":"Subhasis Mandal, Avinandan Bhoumick, Arpana Singh, Sukanya Konar, Arkajyoti Banerjee, Arnab Ghosh, Prosenjit Sen","doi":"10.1021/acsbiomaterials.4c01291","DOIUrl":"10.1021/acsbiomaterials.4c01291","url":null,"abstract":"<p><p>Melanoma, an aggressive skin cancer originating from melanocytes, presents substantial challenges due to its high metastatic potential and resistance to conventional therapies. Hydrogels, 3D networks of hydrophilic polymers with high water-retention capacities, offer significant promise for controlled drug delivery applications. In this study, we report the synthesis and characterization of hydrogelators based on the triazine molecular scaffold, which self-assemble into fibrous networks conducive to hydrogel formation. Rheological analysis confirmed their hydrogelation properties, while microscopic techniques, including FE-SEM and FEG-TEM, provided insights into their morphological networks. The drug delivery capability of these hydrogelators was evaluated using doxorubicin, a widely employed anticancer agent, demonstrating enhanced biocompatibility and reduced side effects compared to free doxorubicin. Additionally, the hydrogelators exhibited inhibitory activity against phosphoinositide 3-kinase (PI3K), a key enzyme frequently mutated in cancer and also involved in melanoma progression. The dual functionality of this delivery system─controlled drug release and PI3K inhibition─highlights the potential of triazine-based hydrogelators as innovative therapeutic platforms for melanoma treatment.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"354-370"},"PeriodicalIF":5.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-Assembled DNA-Collagen Bioactive Scaffolds Promote Cellular Uptake and Neuronal Differentiation.","authors":"Nihal Singh, Ankur Singh, Dhiraj Bhatia","doi":"10.1021/acsbiomaterials.4c01216","DOIUrl":"10.1021/acsbiomaterials.4c01216","url":null,"abstract":"<p><p>Different modalities of DNA/collagen complexes have been utilized primarily for gene delivery studies. However, very few studies have investigated the potential of these complexes as bioactive scaffolds. Further, no studies have characterized the DNA/collagen complex formed from the interaction of the self-assembled DNA macrostructure and collagen. Toward this investigation, we report herein the fabrication of novel bioactive scaffolds formed from the interaction of sequence-specific, self-assembled DNA macrostructure and collagen type I. Varying molar ratios of DNA and collagen resulted in highly intertwined fibrous scaffolds with different fibrillar thicknesses. The formed scaffolds were biocompatible and presented as a soft matrix for cell growth and proliferation. Cells cultured on DNA/collagen scaffolds promoted the enhanced cellular uptake of transferrin, and the potential of DNA/collagen scaffolds to induce neuronal cell differentiation was further investigated. The DNA/collagen scaffolds promoted neuronal differentiation of precursor cells with extensive neurite growth in comparison to the control groups. These novel, self-assembled DNA/collagen scaffolds could serve as a platform for the development of various bioactive scaffolds with potential applications in neuroscience, drug delivery, tissue engineering, and in vitro cell culture.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"308-321"},"PeriodicalIF":5.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kathryn M Luly, Jordan J Green, Joel C Sunshine, Stephany Y Tzeng
{"title":"Correction to \"Biomaterial-Mediated Genetic Reprogramming of Merkel Cell Carcinoma and Melanoma Leads to Targeted Cancer Cell Killing <i>In Vitro</i> and <i>In Vivo</i>\".","authors":"Kathryn M Luly, Jordan J Green, Joel C Sunshine, Stephany Y Tzeng","doi":"10.1021/acsbiomaterials.4c02308","DOIUrl":"10.1021/acsbiomaterials.4c02308","url":null,"abstract":"","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"692"},"PeriodicalIF":5.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733920/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara Mihandoost, Sima Rezvantalab, Roger M Pallares, Volkmar Schulz, Fabian Kiessling
{"title":"A Generative Adversarial Network Approach to Predict Nanoparticle Size in Microfluidics.","authors":"Sara Mihandoost, Sima Rezvantalab, Roger M Pallares, Volkmar Schulz, Fabian Kiessling","doi":"10.1021/acsbiomaterials.4c01423","DOIUrl":"10.1021/acsbiomaterials.4c01423","url":null,"abstract":"<p><p>To achieve precise control over the properties and performance of nanoparticles (NPs) in a microfluidic setting, a profound understanding of the influential parameters governing the NP size is crucial. This study specifically delves into poly(lactic-<i>co</i>-glycolic acid) (PLGA)-based NPs synthesized through microfluidics that have been extensively explored as drug delivery systems (DDS). A comprehensive database, containing more than 11 hundred data points, is curated through an extensive literature review, identifying potential effective features. Initially, we employed a tabular generative adversarial network (TGAN) to enhance data sets, increasing the reliability of the obtained results and elevating prediction accuracy. Subsequently, NP size prediction was performed using different machine learning (ML) techniques including decision tree (DT), random forest (RF), deep neural networks (DNN), linear regression (LR), support vector regression (SVR), and gradient boosting (GB). Among these ensembles, DT emerges as the most accurate algorithm, yielding an average prediction error of 8%. Further simulations underscore the pivotal role of the synthesis method, poly(vinyl alcohol) (PVA) concentration, and lactide-to-glycolide (LA/GA) ratio of PLGA copolymers as the primary determinants influencing NP size.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"268-279"},"PeriodicalIF":5.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sunil Vasu, Vinith Johnson, Archana M, K Anki Reddy, Uday Kumar Sukumar
{"title":"Circulating Extracellular Vesicles as Promising Biomarkers for Precession Diagnostics: A Perspective on Lung Cancer.","authors":"Sunil Vasu, Vinith Johnson, Archana M, K Anki Reddy, Uday Kumar Sukumar","doi":"10.1021/acsbiomaterials.4c01323","DOIUrl":"10.1021/acsbiomaterials.4c01323","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) have emerged as promising biomarkers in liquid biopsy, owing to their ubiquitous presence in bodily fluids and their ability to carry disease-related cargo. Recognizing their significance in disease diagnosis and treatment, substantial efforts have been dedicated to developing efficient methods for EV isolation, detection, and analysis. EVs, heterogeneous membrane-encapsulated vesicles secreted by all cells, contain bioactive substances capable of modulating recipient cell biology upon internalization, including proteins, lipids, DNA, and various RNAs. Their prevalence across bodily fluids has positioned them as pivotal mediators in physiological and pathological processes, notably in cancer, where they hold potential as straightforward tumor biomarkers. This review offers a comprehensive examination of advanced nanotechnology-based techniques for detecting lung cancer through EV analysis. It begins by providing a brief overview of exosomes and their role in lung cancer progression. Furthermore, this review explores the evolving landscape of EV isolation and cargo analysis, highlighting the importance of characterizing specific biomolecular signatures within EVs for improved diagnostic accuracy in lung cancer patients. Innovative strategies for enhancing the sensitivity and specificity of EV isolation and detection, including the integration of microfluidic platforms and multiplexed biosensing technologies are summarized. The discussion then extends to key challenges associated with EV-based liquid biopsies, such as the standardization of isolation and detection protocols and the establishment of robust analytical platforms for clinical translation. This review highlights the transformative impact of EV-based liquid biopsy in lung cancer diagnosis, heralding a new era of personalized medicine and improved patient care.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"95-134"},"PeriodicalIF":5.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}