Intranasal Delivery of Ivermectin Nanosystems as an Antitumor Agent: Focusing on Glioma Suppression.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Maiara Callegaro Velho, Valeria Luiza Winck, Camila da Silveira Mariot, Juliete Nathali Scholl, Augusto Ferreira Weber, Rita de Kássia Souza, Fernanda Visioli, Fabrício Figueiró, Monique Deon, Diogo André Pilger, Ruy Carlos Ruver Beck
{"title":"Intranasal Delivery of Ivermectin Nanosystems as an Antitumor Agent: Focusing on Glioma Suppression.","authors":"Maiara Callegaro Velho, Valeria Luiza Winck, Camila da Silveira Mariot, Juliete Nathali Scholl, Augusto Ferreira Weber, Rita de Kássia Souza, Fernanda Visioli, Fabrício Figueiró, Monique Deon, Diogo André Pilger, Ruy Carlos Ruver Beck","doi":"10.1021/acsbiomaterials.5c00642","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma presents significant challenges in neuro-oncology due to its aggressive nature, drug resistance, and restrictions imposed by the blood-brain barrier. Ivermectin (IVM), known for its antiparasitic properties, has been highlighted as a promising treatment for tumors and an alternative therapy for glioma, although it exhibits low oral bioavailability. Therefore, we investigated the <i>in vivo</i> effect of IVM encapsulation in organic and inorganic nanosystems, first screened <i>in vitro</i> against different tumor cells and subsequently evaluated <i>in vitro</i> and <i>in vivo</i> glioma models. We produced IVM-loaded poly(ε-caprolactone) nanocapsules (IVM-NC) using the interfacial deposition method, and IVM-loaded nanostructured silica particles (IVM-MCM) by loading IVM into commercial MCM-41 silica using the incipient wetness method. IVM-NC had a nanometric size (190 nm), a unimodal size distribution (span <2), and a high encapsulation efficiency (100% at 1 mg/mL). IVM-MCM exhibited a well-organized hexagonal mesoporous structure and high drug loading (0.12 mg/mg). Nanoencapsulated IVM significantly reduced the viability of various cancer cell lines, particularly glioma cell lines, which led us to evaluate them in a preclinical glioma model. We implanted adult male Wistar rats with C6 cells. Intranasal delivery of IVM-NC (60 μg/rat/day for 10 days) resulted in a larger decrease in tumor size compared with the group treated with free IVM, along with histopathological improvements. Treatment with IVM-MCM did not decrease the tumor size. However, both treatments were well-tolerated, with no adverse effects on weight, biochemical, or hematological parameters, or lung histology. Furthermore, the effective equivalent dose of IVM (26 μg/kg) in the rat glioma model was lower than the approved human dose for parasitic infections. This study marks the first exploration of IVM delivery to the brain. In summary, nasal administration of nanoencapsulated IVM via nanocapsules presents a promising avenue for targeted therapy against glioblastoma, with potential implications for clinical translation.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00642","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma presents significant challenges in neuro-oncology due to its aggressive nature, drug resistance, and restrictions imposed by the blood-brain barrier. Ivermectin (IVM), known for its antiparasitic properties, has been highlighted as a promising treatment for tumors and an alternative therapy for glioma, although it exhibits low oral bioavailability. Therefore, we investigated the in vivo effect of IVM encapsulation in organic and inorganic nanosystems, first screened in vitro against different tumor cells and subsequently evaluated in vitro and in vivo glioma models. We produced IVM-loaded poly(ε-caprolactone) nanocapsules (IVM-NC) using the interfacial deposition method, and IVM-loaded nanostructured silica particles (IVM-MCM) by loading IVM into commercial MCM-41 silica using the incipient wetness method. IVM-NC had a nanometric size (190 nm), a unimodal size distribution (span <2), and a high encapsulation efficiency (100% at 1 mg/mL). IVM-MCM exhibited a well-organized hexagonal mesoporous structure and high drug loading (0.12 mg/mg). Nanoencapsulated IVM significantly reduced the viability of various cancer cell lines, particularly glioma cell lines, which led us to evaluate them in a preclinical glioma model. We implanted adult male Wistar rats with C6 cells. Intranasal delivery of IVM-NC (60 μg/rat/day for 10 days) resulted in a larger decrease in tumor size compared with the group treated with free IVM, along with histopathological improvements. Treatment with IVM-MCM did not decrease the tumor size. However, both treatments were well-tolerated, with no adverse effects on weight, biochemical, or hematological parameters, or lung histology. Furthermore, the effective equivalent dose of IVM (26 μg/kg) in the rat glioma model was lower than the approved human dose for parasitic infections. This study marks the first exploration of IVM delivery to the brain. In summary, nasal administration of nanoencapsulated IVM via nanocapsules presents a promising avenue for targeted therapy against glioblastoma, with potential implications for clinical translation.

伊维菌素纳米系统作为抗肿瘤药物的鼻内递送:聚焦于胶质瘤抑制。
胶质母细胞瘤由于其侵袭性、耐药性和血脑屏障的限制,在神经肿瘤学中提出了重大挑战。伊维菌素(IVM)以其抗寄生虫特性而闻名,尽管其口服生物利用度较低,但已被强调为一种有希望的肿瘤治疗和胶质瘤的替代疗法。因此,我们研究了IVM包封在有机和无机纳米系统中的体内效应,首先在体外筛选不同肿瘤细胞,随后在体外和体内胶质瘤模型中进行了评估。采用界面沉积法制备了IVM负载的聚(ε-己内酯)纳米胶囊(IVM- nc),采用初湿法将IVM加载到商用MCM-41二氧化硅中制备了IVM负载的纳米结构二氧化硅颗粒(IVM- mcm)。IVM-NC具有纳米尺寸(190nm),单峰尺寸分布(跨度为10nm)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信