用于评估神经肽局部递送系统的感觉神经元集成皮肤球体模型的开发。

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Bianca Aparecida Martin, Juliana Viegas, Luciana Facco Dalmolin, Emerson de Souza Santos, Izabela Pereira Vatanabe, Sabrina Francesca Lisboa, Renata Fonseca Vianna Lopez, Bruno Sarmento
{"title":"用于评估神经肽局部递送系统的感觉神经元集成皮肤球体模型的开发。","authors":"Bianca Aparecida Martin, Juliana Viegas, Luciana Facco Dalmolin, Emerson de Souza Santos, Izabela Pereira Vatanabe, Sabrina Francesca Lisboa, Renata Fonseca Vianna Lopez, Bruno Sarmento","doi":"10.1021/acsbiomaterials.5c00141","DOIUrl":null,"url":null,"abstract":"<p><p>The skin is a complex organ composed of multiple layers and diverse cell types, including keratinocytes, fibroblasts, adipocytes, and sensory neurons, which maintain its structural and functional integrity together. Conventional in vitro and ex vivo models help investigate drug permeation and selected biological effects. However, they are limited in replicating neural interactions critical for assessing the efficacy of neuropeptide-based therapies. To address this limitation, a sensory neuron-integrated skin spheroid (SS) model was established, incorporating key skin cell types and providing a rapid, adaptable, and physiologically relevant platform for screening the biological activity of topical delivery systems targeting neuronal pathways. The model's responsiveness was demonstrated using acetyl hexapeptide-3 (HEX-3), a neuropeptide that inhibits acetylcholine release. HEX-3 was internalized by spheroid cells, with preferential accumulation around sensory neurons, confirming targeted cellular uptake. In parallel, ex vivo human skin studies confirmed that HEX-3 can traverse the stratum corneum and accumulate in deeper layers. Treatment with this film enhanced skin hydration, reduced scaling, and improved the structural organization of the stratum corneum after 48 h. Functional assays using the SS model showed that HEX-3 treatment suppressed acetylcholine release, upregulated the antioxidant enzyme SOD2, and stimulated type I collagen synthesis. In aged skin samples, the application of HEX-3 significantly increased collagen levels. This effect was mirrored in the spheroid model, which reached collagen levels comparable to those of aged human skin upon treatment. These findings establish the SS model as a robust platform for evaluating the biological activity of neuropeptide-based topical therapies, offering valuable insights for developing advanced strategies for skin rejuvenation and repair.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Sensory Neuron-Integrated Skin Spheroid Model for the Evaluation of Neuropeptide-Based Topical Delivery Systems.\",\"authors\":\"Bianca Aparecida Martin, Juliana Viegas, Luciana Facco Dalmolin, Emerson de Souza Santos, Izabela Pereira Vatanabe, Sabrina Francesca Lisboa, Renata Fonseca Vianna Lopez, Bruno Sarmento\",\"doi\":\"10.1021/acsbiomaterials.5c00141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The skin is a complex organ composed of multiple layers and diverse cell types, including keratinocytes, fibroblasts, adipocytes, and sensory neurons, which maintain its structural and functional integrity together. Conventional in vitro and ex vivo models help investigate drug permeation and selected biological effects. However, they are limited in replicating neural interactions critical for assessing the efficacy of neuropeptide-based therapies. To address this limitation, a sensory neuron-integrated skin spheroid (SS) model was established, incorporating key skin cell types and providing a rapid, adaptable, and physiologically relevant platform for screening the biological activity of topical delivery systems targeting neuronal pathways. The model's responsiveness was demonstrated using acetyl hexapeptide-3 (HEX-3), a neuropeptide that inhibits acetylcholine release. HEX-3 was internalized by spheroid cells, with preferential accumulation around sensory neurons, confirming targeted cellular uptake. In parallel, ex vivo human skin studies confirmed that HEX-3 can traverse the stratum corneum and accumulate in deeper layers. Treatment with this film enhanced skin hydration, reduced scaling, and improved the structural organization of the stratum corneum after 48 h. Functional assays using the SS model showed that HEX-3 treatment suppressed acetylcholine release, upregulated the antioxidant enzyme SOD2, and stimulated type I collagen synthesis. In aged skin samples, the application of HEX-3 significantly increased collagen levels. This effect was mirrored in the spheroid model, which reached collagen levels comparable to those of aged human skin upon treatment. These findings establish the SS model as a robust platform for evaluating the biological activity of neuropeptide-based topical therapies, offering valuable insights for developing advanced strategies for skin rejuvenation and repair.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.5c00141\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00141","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

皮肤是由多层和多种细胞类型组成的复杂器官,包括角质形成细胞、成纤维细胞、脂肪细胞和感觉神经元,它们共同维持其结构和功能的完整性。传统的体外和离体模型有助于研究药物渗透和选定的生物效应。然而,它们在复制神经相互作用方面受到限制,而神经相互作用对于评估神经肽治疗的疗效至关重要。为了解决这一限制,我们建立了一个感觉神经元集成皮肤球体(SS)模型,纳入了关键的皮肤细胞类型,并提供了一个快速、适应性强、生理相关的平台,用于筛选靶向神经通路的局部递送系统的生物活性。使用乙酰六肽-3 (hexx -3)证明了模型的反应性,这是一种抑制乙酰胆碱释放的神经肽。HEX-3被球状细胞内化,在感觉神经元周围优先积累,证实了细胞的靶向摄取。与此同时,离体人体皮肤研究证实,HEX-3可以穿过角质层并在更深的层中积累。经该膜处理后,48 h后皮肤水合作用增强,结垢减少,角质层结构组织改善。SS模型功能分析显示,HEX-3处理抑制乙酰胆碱释放,上调抗氧化酶SOD2,刺激I型胶原合成。在老化皮肤样本中,HEX-3的应用显著提高了胶原蛋白水平。这种效果在球体模型中得到了反映,在治疗后达到了与衰老人类皮肤相当的胶原蛋白水平。这些发现建立了SS模型作为评估神经肽局部治疗生物活性的强大平台,为开发先进的皮肤年轻化和修复策略提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Sensory Neuron-Integrated Skin Spheroid Model for the Evaluation of Neuropeptide-Based Topical Delivery Systems.

The skin is a complex organ composed of multiple layers and diverse cell types, including keratinocytes, fibroblasts, adipocytes, and sensory neurons, which maintain its structural and functional integrity together. Conventional in vitro and ex vivo models help investigate drug permeation and selected biological effects. However, they are limited in replicating neural interactions critical for assessing the efficacy of neuropeptide-based therapies. To address this limitation, a sensory neuron-integrated skin spheroid (SS) model was established, incorporating key skin cell types and providing a rapid, adaptable, and physiologically relevant platform for screening the biological activity of topical delivery systems targeting neuronal pathways. The model's responsiveness was demonstrated using acetyl hexapeptide-3 (HEX-3), a neuropeptide that inhibits acetylcholine release. HEX-3 was internalized by spheroid cells, with preferential accumulation around sensory neurons, confirming targeted cellular uptake. In parallel, ex vivo human skin studies confirmed that HEX-3 can traverse the stratum corneum and accumulate in deeper layers. Treatment with this film enhanced skin hydration, reduced scaling, and improved the structural organization of the stratum corneum after 48 h. Functional assays using the SS model showed that HEX-3 treatment suppressed acetylcholine release, upregulated the antioxidant enzyme SOD2, and stimulated type I collagen synthesis. In aged skin samples, the application of HEX-3 significantly increased collagen levels. This effect was mirrored in the spheroid model, which reached collagen levels comparable to those of aged human skin upon treatment. These findings establish the SS model as a robust platform for evaluating the biological activity of neuropeptide-based topical therapies, offering valuable insights for developing advanced strategies for skin rejuvenation and repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信