Biology of Reproduction最新文献

筛选
英文 中文
HOTAIR/miR-1277-5p/FBN2 signaling axis is involved in recurrent spontaneous abortion by regulating the growth, migration, and invasion of HTR-8/SVneo cells†. HOTAIR/miR-1277-5p/FBN2信号轴通过调节HTR-8/SVneo细胞的生长、迁移和侵袭参与复发性自然流产。
IF 3.1 2区 生物学
Biology of Reproduction Pub Date : 2024-07-12 DOI: 10.1093/biolre/ioae030
Na Long, Ru-Liang Sun, Qing-Hua Lai, Mei-Yin Lu, Xiao-Hong Li, Yan-Na Chen, Dong-Yan Zhu
{"title":"HOTAIR/miR-1277-5p/FBN2 signaling axis is involved in recurrent spontaneous abortion by regulating the growth, migration, and invasion of HTR-8/SVneo cells†.","authors":"Na Long, Ru-Liang Sun, Qing-Hua Lai, Mei-Yin Lu, Xiao-Hong Li, Yan-Na Chen, Dong-Yan Zhu","doi":"10.1093/biolre/ioae030","DOIUrl":"10.1093/biolre/ioae030","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to explore the specific pathways by which HOX transcript antisense intergenic RNA contributes to the pathogenesis of unexplained recurrent spontaneous abortion.</p><p><strong>Methods: </strong>Real-time quantitative PCR was employed to assess the differential expression levels of HOX transcript antisense intergenic RNA in chorionic villi tissues from unexplained recurrent spontaneous abortion patients and women with voluntarily terminated pregnancies. HTR-8/SVneo served as a cellular model. Knockdown and overexpression of HOX transcript antisense intergenic RNA in the cells were achieved through siRNA transfection and pcDNA3.1 transfection, respectively. Cell viability, migration, and invasion were evaluated using cell counting kit-8, scratch, and Transwell assays, respectively. The interaction among the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 axis was predicted through bioinformatics analysis and confirmed through in vitro experiments. Furthermore, the regulatory effects of the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 signaling axis on cellular behaviors were validated in HTR-8/SVneo cells.</p><p><strong>Results: </strong>We found that HOX transcript antisense intergenic RNA was downregulated in chorionic villi tissues from unexplained recurrent spontaneous abortion patients. Overexpression of HOX transcript antisense intergenic RNA significantly enhanced the viability, migration, and invasion of HTR-8/SVneo cells, while knockdown of HOX transcript antisense intergenic RNA had the opposite effects. We further confirmed the regulatory effect of the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 signaling axis in unexplained recurrent spontaneous abortion. Specifically, HOX transcript antisense intergenic RNA and fibrillin 2 were found to reduce the risk of unexplained recurrent spontaneous abortion by enhancing cell viability, migration, and invasion, whereas miR-1277-5p exerted the opposite effects.</p><p><strong>Conclusion: </strong>HOX transcript antisense intergenic RNA promotes unexplained recurrent spontaneous abortion development by targeting inhibition of miR-1277-5p/fibrillin 2 axis.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139943860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical and gonadal transcriptome analysis of 38,XX disorder of sex development pigs†. 38,XX 性发育障碍猪的临床和性腺转录组分析。
IF 3.1 2区 生物学
Biology of Reproduction Pub Date : 2024-07-12 DOI: 10.1093/biolre/ioae046
Jinhua Wu, Shuwen Tan, Yi Zhou, Haiquan Zhao, Hui Yu, Bingzhou Zhong, Congying Yu, Haoming Wang, Yin Yang, Hua Li, Yugu Li
{"title":"Clinical and gonadal transcriptome analysis of 38,XX disorder of sex development pigs†.","authors":"Jinhua Wu, Shuwen Tan, Yi Zhou, Haiquan Zhao, Hui Yu, Bingzhou Zhong, Congying Yu, Haoming Wang, Yin Yang, Hua Li, Yugu Li","doi":"10.1093/biolre/ioae046","DOIUrl":"10.1093/biolre/ioae046","url":null,"abstract":"<p><p>Pigs serve as a robust animal model for the study of human diseases, notably in the context of disorders of sex development (DSD). This study aims to investigate the phenotypic characteristics and molecular mechanisms underlying the reproductive and developmental abnormalities of 38,XX ovotestis-DSD (OT-DSD) and 38,XX testis-DSD (T-DSD) in pigs. Clinical and transcriptome sequencing analyses were performed on DSD and normal female pigs. Cytogenetic and SRY analyses confirmed that OT/T-DSD pigs exhibited a 38,XX karyotype and lacked the SRY gene. The DSD pigs had higher levels of follicle-stimulating hormone, luteinizing hormone, and progesterone, but lower testosterone levels when compared with normal male pigs. The reproductive organs of OT/T-DSD pigs exhibit abnormal development, displaying both male and female characteristics, with an absence of germ cells in the seminiferous tubules. Sex determination and development-related differentially expressed genes shared between DSD pigs were identified in the gonads, including WT1, DKK1, CTNNB1, WTN9B, SHOC, PTPN11, NRG1, and NXK3-1. DKK1 is proposed as a candidate gene for investigating the regulatory mechanisms underlying gonadal phenotypic differences between OT-DSD and T-DSD pigs. Consequently, our findings provide insights into the molecular pathogenesis of DSD pigs and present an animal model for studying into DSD in humans.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140292726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reproductive & Developmental Toxicity of quaternary ammonium compounds. 季铵盐化合物的生殖与发育毒性。
IF 3.1 2区 生物学
Biology of Reproduction Pub Date : 2024-07-03 DOI: 10.1093/biolre/ioae107
Leyla Bobic, Allison Harbolic, Genoa R Warner
{"title":"Reproductive & Developmental Toxicity of quaternary ammonium compounds.","authors":"Leyla Bobic, Allison Harbolic, Genoa R Warner","doi":"10.1093/biolre/ioae107","DOIUrl":"10.1093/biolre/ioae107","url":null,"abstract":"<p><p>Quaternary ammonium compounds (QACs) are a class of chemicals commonly used as disinfectants in household and healthcare settings. Their usage has significantly increased in recent years due to the COVID-19 pandemic. In addition, QACs have replaced the recently banned disinfectants triclosan and triclocarban in consumer products. QACs are found in daily antimicrobial and personal care products such as household disinfectants, mouthwash, and hair care products. Due to the pervasiveness of QACs in daily use products, humans are constantly exposed. However, little is known about the health effects of everyday QAC exposure, particularly effects on human reproduction and development. Studies that investigate the harmful effects of QACs on reproduction are largely limited to high-dose studies, which may not be predictive of low dose, daily exposure, especially as QACs may be endocrine disrupting chemicals. This review analyzes recent studies on QAC effects on reproductive health, identifying knowledge gaps, and recommending future directions in QAC-related research.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slit1 inhibits ovarian follicle development and female fertility in mice. Slit1 可抑制小鼠卵泡发育和雌性生育能力。
IF 3.1 2区 生物学
Biology of Reproduction Pub Date : 2024-06-29 DOI: 10.1093/biolre/ioae106
Florine Grudet, Emmanuelle Martinot, Philippe Godin, Michael Bérubé, Alain Chédotal, Derek Boerboom
{"title":"Slit1 inhibits ovarian follicle development and female fertility in mice.","authors":"Florine Grudet, Emmanuelle Martinot, Philippe Godin, Michael Bérubé, Alain Chédotal, Derek Boerboom","doi":"10.1093/biolre/ioae106","DOIUrl":"https://doi.org/10.1093/biolre/ioae106","url":null,"abstract":"<p><p>Previous in vitro studies have suggested that SLIT ligands could play roles in regulating ovarian granulosa cell proliferation and gene expression, as well as luteolysis. However, no in vivo study of Slit gene function has been conducted to date. Here we investigated the potential role of Slit1 in ovarian biology using a Slit1-null mouse model. Female Slit1-null mice were found to produce larger litters than their wild-type counterparts due to increased ovulation rates. Increased ovarian weights in Slit1-null animals were found to be due to the presence of greater numbers of healthy antral follicles with similar numbers of atretic ones, suggesting both an increased rate of follicle recruitment and a decreased rate of atresia. Consistent with this, treatment of cultured granulosa cells with exogenous SLIT1 induced apoptosis in presence or absence of FSH, but had no effect on cell proliferation. Although few alterations in the mRNA levels of FSH-responsive genes were noted in granulosa cells of Slit1-null mice, LH target gene mRNA levels were greatly increased. Finally, increased phospho-AKT levels were found in granulosa cells isolated from Slit1-null mice, and SLIT1 pretreatment of cultured granulosa cells inhibited the ability of both FSH and LH to increase AKT phosphorylation, suggesting a mechanism whereby SLIT1 could antagonize gonadotropin signaling. These findings therefore represent the first evidence for a physiological role of a SLIT ligand in the ovary, and define Slit1 as a novel autocrine/paracrine regulator of follicle development.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H2S Donor GYY4137 Mitigates sFlt-1-Induced Hypertension and Vascular Dysfunction in Pregnant Rats. H2S 供体 GYY4137 可减轻 sFlt-1 诱导的妊娠大鼠高血压和血管功能障碍
IF 3.1 2区 生物学
Biology of Reproduction Pub Date : 2024-06-28 DOI: 10.1093/biolre/ioae103
Pankaj Yadav, Jay S Mishra, Mason William Hurt, Dong-Bao Chen, Sathish Kumar
{"title":"H2S Donor GYY4137 Mitigates sFlt-1-Induced Hypertension and Vascular Dysfunction in Pregnant Rats.","authors":"Pankaj Yadav, Jay S Mishra, Mason William Hurt, Dong-Bao Chen, Sathish Kumar","doi":"10.1093/biolre/ioae103","DOIUrl":"https://doi.org/10.1093/biolre/ioae103","url":null,"abstract":"<p><strong>Background: </strong>Gestational hypertension, often associated with elevated soluble Fms-related receptor tyrosine kinase 1 (sFlt-1), poses significant risks to both maternal and fetal health. Hydrogen sulfide (H2S), a gasotransmitter, has demonstrated blood pressure-lowering effects in hypertensive animals and humans. However, its role in pregnancy-induced hypertension remains unclear.</p><p><strong>Objective: </strong>This study aimed to investigate the impact of GYY4137, a slow-release H2S donor, on sFlt-1-induced hypertension in pregnant rats and examine the underlying mechanisms.</p><p><strong>Methods: </strong>Pregnant rats were administered sFlt-1 (6 μg/kg/day, intravenously) or vehicle from gestation day (GD) 12 to 20. A subset of these groups received GYY4137 (an H2S donor, 50 mg/kg/day, subcutaneously) from GD 16 to 20. Serum H2S levels, mean arterial blood pressure (CODA tail-cuff), uterine artery blood flow (ultrasonography), vascular reactivity to vasopressors and endothelial-dependent relaxation (myography), endothelial nitric oxide synthase (eNOS) protein expression in uterine arteries (Western blotting) were assessed. In addition, maternal weight gain, as well as fetal and placental weights, were measured.</p><p><strong>Results: </strong>Elevated sFlt-1 reduced both maternal weight gain and serum H2S levels. GYY4137 treatment restored both weight gain and H2S levels in sFlt-1 dams. sFlt-1 increased mean arterial pressure and decreased uterine artery blood flow in pregnant rats. However, treatment with GYY4137 normalized blood pressure and restored uterine blood flow in sFlt-1 dams. sFlt-1 dams exhibited heightened vasoconstriction to phenylephrine and GYY4137 significantly mitigated the exaggerated vascular contraction. Notably, sFlt-1 impaired endothelium-dependent relaxation, while GYY4137 attenuated this impairment by upregulating eNOS protein levels and enhancing vasorelaxation in uterine arteries. GYY4137 mitigated sFlt-1-induced fetal growth restriction.</p><p><strong>Conclusion: </strong>sFlt-1 mediated hypertension is associated with decreased H2S levels. Replenishing H2S with the donor GYY4137 mitigates hypertension and improves vascular function and fetal growth outcomes. This suggests modulation of H2S could offer a novel therapeutic strategy for managing gestational hypertension and adverse fetal effects.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The downregulation of NSUN5 may contribute to preeclampsia. NSUN5 的下调可能会导致子痫前期。
IF 3.1 2区 生物学
Biology of Reproduction Pub Date : 2024-06-26 DOI: 10.1093/biolre/ioae096
Tianying Zhang, Hua Li, Enhui Jiang, Lisheng Liu, Cong Zhang
{"title":"The downregulation of NSUN5 may contribute to preeclampsia.","authors":"Tianying Zhang, Hua Li, Enhui Jiang, Lisheng Liu, Cong Zhang","doi":"10.1093/biolre/ioae096","DOIUrl":"https://doi.org/10.1093/biolre/ioae096","url":null,"abstract":"<p><p>Preeclampsia (PE) is a complication of pregnancy characterized by the new onset of hypertension after 20 weeks of gestation. The incidence of PE is steadily rising, posing a significant threat to the lives of both the pregnant woman and the fetus. Most studies on PE pathogenesis currently focus on the placenta, but maternal decidualization forms the foundation for placental growth and development. Recent studies have shown that impaired decidualization is also a cause of PE. Decidualization is a process where endometrial stromal cells gradually transform into secretory decidual cells during early pregnancy. While NSUN5 encodes a member of a conserved family of proteins, its role in pregnancy remains unknown. In this study, we conducted experiments and observed a significant downregulation of NSUN5 expression in severe preeclampsia decidual tissues compared to those of normal pregnant women. When inducing decidualization in vitro, we found an increase in NSUN5 expression. However, when we used siRNA to knockdown NSUN5 expression, the process of decidualization was prevented. Moreover, we observed a decrease in ATP content during both cell decidualization and after knockdown of NSUN5. Finally, through immunoprecipitation combined with mass spectrometry, we discovered that the protein ATP5B interacts with NSUN5. Furthermore, after knocking down ATP5B using siRNA, we observed impaired decidualization. Moreover, transfection with siRNA to suppress NSUN5 resulted in a decrease in ATP5B expression. These significant findings provide strong evidence that NSUN5 plays a crucial role in decidualization and is closely associated with the development of PE through its interaction with ATP5B.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
E2 to P4 ratio is associated with conceptus attachment in dairy cows receiving AI after double-Ovsynch but not estrus. E2 与 P4 比率与双卵同步后接受人工授精的奶牛的胚胎着床有关,但与发情无关。
IF 3.1 2区 生物学
Biology of Reproduction Pub Date : 2024-06-25 DOI: 10.1093/biolre/ioae102
T Minela, A Santos, J R Pursley
{"title":"E2 to P4 ratio is associated with conceptus attachment in dairy cows receiving AI after double-Ovsynch but not estrus.","authors":"T Minela, A Santos, J R Pursley","doi":"10.1093/biolre/ioae102","DOIUrl":"https://doi.org/10.1093/biolre/ioae102","url":null,"abstract":"<p><p>Prediction of pregnancy survival in lactating dairy cows can be determined by the conceptus attachment timeframe via daily pregnancy-specific protein B (PSPB) monitoring. All factors contributing to reduced fertility in dairy cows receiving AI following estrus detection remain unclear. This study aimed to determine differences in time to conceptus attachment in lactating cows treated with the fertility program Double-Ovsynch compared to cows that were detected in estrus. Additionally, we investigated various pre- and post-conception factors potentially influencing fertility outcomes. We hypothesized that AI following a natural estrus detected with automated activity monitors would lead to an extended time to conceptus attachment and lower PSPB concentrations post-attachment compared to Double-Ovsynch. There were no differences in the average time to conceptus attachments between treatments. However, cows inseminated post-estrus that experienced pregnancy loss between conceptus attachment and 60-66 days post-AI exhibited diminished PSPB concentrations on days 2 and 3 following conceptus attachment. Steroid hormone interactions were assessed with radioimmunoassay to determine the ratios of estrogen to progesterone concentrations on the day of the luteinizing hormone (LH) surge. Notably, estrogen to progesterone ratio proved to predict conceptus attachment in cows subjected to Double-Ovsynch but not in those inseminated post-estrus detection surge. In conclusion, the estrogen to progesterone ratio measured around the time of the pre-ovulatory LH surge emerges as a potentially effective tool for estimating the fertility potential of lactating dairy cows undergoing timed AI, particularly in the context of the Double-Ovsynch program.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conceptus Estrogen and prostaglandins provide the maternal recognition of pregnancy signal to prevent Luteolysis during early pregnancy in the pig†. 概念雌激素和前列腺素提供母体识别妊娠信号,防止猪早期妊娠发生黄体溶解。
IF 3.1 2区 生物学
Biology of Reproduction Pub Date : 2024-06-21 DOI: 10.1093/biolre/ioae104
Riley M Sullivan, Caroline G Lucas, Mariana Sponchiado, Emily K Eitel, Lee D Spate, Matthew C Lucy, Michael F Smith, Kevin D Wells, Randall S Prather, Rodney D Geisert
{"title":"Conceptus Estrogen and prostaglandins provide the maternal recognition of pregnancy signal to prevent Luteolysis during early pregnancy in the pig†.","authors":"Riley M Sullivan, Caroline G Lucas, Mariana Sponchiado, Emily K Eitel, Lee D Spate, Matthew C Lucy, Michael F Smith, Kevin D Wells, Randall S Prather, Rodney D Geisert","doi":"10.1093/biolre/ioae104","DOIUrl":"https://doi.org/10.1093/biolre/ioae104","url":null,"abstract":"<p><p>Conceptus estrogens and prostaglandins have long been considered the primary signals for maternal recognition of pregnancy (MRP) in the pig. However, loss-of-function studies targeting conceptus aromatase genes (CYP19A1 and CYP19A2) and prostaglandin-endoperoxide synthase 2 (PTGS2) indicated that conceptuses can not only signal MRP without estrogens or prostaglandins but can maintain early pregnancy. However, complete loss of estrogen production leads to abortion after day 25 of gestation. Although neither conceptus estrogens nor prostaglandins had a significant effect on early maintenance of CL function alone, the two conceptus factors have a biological relationship. To investigate the role that both conceptus estrogens and prostaglandins have on MRP and maintenance of pregnancy, a triple loss-of function model (TKO) was generated for conceptus CYP19A1, CYP19A2 and PTGS2. In addition, a conceptus CYP19A2-/- model (A2KO) was established to determine the role of placental estrogen during later pregnancy. Estrogen and prostaglandin synthesis were greatly reduced in TKO conceptuses which resulted in a failure to inhibit luteolysis after day 15 of pregnancy despite the presence of conceptuses in the uterine lumen. However, A2KO placentae not only maintained functional CL but were able to maintain pregnancy to day 32 of gestation. Despite the loss of placental CYP19A2 expression, the allantois fluid content of estrogen was not affected as the placenta compensated by expressing CYP19A1 and CYP19A3, which are normally absent in controls. Results suggest conceptuses can signal MRP through production of conceptus PGE or stimulating PGE synthesis from the endometrium through conceptus estrogen. Failure of conceptuses to produce both factors results in failure of MRP and loss of pregnancy.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The function of the cytoplasmic dynein light chain PTKM23 in the transport of PTSMAD2 during spermatogenesis in Portunus trituberculatus. 细胞质动力蛋白轻链 PTKM23 在三疣梭子蟹精子发生过程中运输 PTSMAD2 的功能。
IF 3.1 2区 生物学
Biology of Reproduction Pub Date : 2024-06-20 DOI: 10.1093/biolre/ioae098
Qiu-Meng Xiang, Le Chang, Jun-Quan Zhu, Chang-Kao Mu, Chun-Lin Wang, Cong-Cong Hou
{"title":"The function of the cytoplasmic dynein light chain PTKM23 in the transport of PTSMAD2 during spermatogenesis in Portunus trituberculatus.","authors":"Qiu-Meng Xiang, Le Chang, Jun-Quan Zhu, Chang-Kao Mu, Chun-Lin Wang, Cong-Cong Hou","doi":"10.1093/biolre/ioae098","DOIUrl":"https://doi.org/10.1093/biolre/ioae098","url":null,"abstract":"<p><p>Cytoplasmic dynein participates in transport functions and is essential in spermatogenesis. KM23 belongs to the dynein light chain family. The TGFβ signaling pathway is indispensable in spermatogenesis, and Smad2 is an important member of this pathway. We cloned PTKM23 and PTSMAD2 from Portunus trituberculatus and measured their expression during spermatogenesis. PTKM23 may be related to cell division, acrosome formation and nuclear remodeling, and PTSMAD2 may participate in regulating the expression of genes related to spermatogenesis. We assessed the localization of PTKM23 with PTDHC and α-Tubulin, and the results suggested that PTKM23 functions in intracellular transport during spermatogenesis. We knocked down PTKM23 in vivo, and the expression of p53, B-CATAENIN and CYCLIN B decreased significantly, further suggesting a role of PTKM23 in transport and cell division. The localization of PTDIC with α-Tubulin and that of PTSMAD2 with PTDHC changed after PTKM23 knockdown. We transfected PTKM23 and PTSMAD2 into HEK-293 T cells and verified their colocalization. These results indicate that PTKM23 is involved in the assembly of cytoplasmic dynein and microtubules during spermatogenesis and that PTKM23 mediates the participation of cytoplasmic dynein in the transport of PTSMAD2 during spermatogenesis. This study provides a theoretical molecular biological basis for the breeding of P. trituberculatus.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human trophoblast invasion and migration are mediated by the YAP1-CCN1 pathway: defective signaling in trophoblasts during early-onset severe preeclampsia. 人体滋养细胞的侵袭和迁移由 YAP1-CCN1 通路介导:早期重度子痫前期滋养细胞的信号传导缺陷。
IF 3.6 2区 生物学
Biology of Reproduction Pub Date : 2024-06-14 DOI: 10.1093/biolre/ioae097
Liang Wu, Shengfu Wang, Hongyue Li, Haotian Lu, Yuanke Zheng, Tianfei Feng, Yingpu Sun
{"title":"Human trophoblast invasion and migration are mediated by the YAP1-CCN1 pathway: defective signaling in trophoblasts during early-onset severe preeclampsia.","authors":"Liang Wu, Shengfu Wang, Hongyue Li, Haotian Lu, Yuanke Zheng, Tianfei Feng, Yingpu Sun","doi":"10.1093/biolre/ioae097","DOIUrl":"https://doi.org/10.1093/biolre/ioae097","url":null,"abstract":"<p><p>The transcription coactivator YAP1 mediates the major effects of the Hippo signaling pathway. The CCN family is a small group of glycoproteins known to be downstream effectors of YAP1 in diverse tissues. However, whether CCN family members mediate the effects of YAP1 in human trophoblasts is unknown. In this study, placental expression of both YAP1 and CCN1 was found to be impaired in pregnancies complicated by early-onset severe preeclampsia (sPE). CCN1 was expressed not only in cytotrophoblasts, trophoblast columns and mesenchymal cells, similar to active YAP1, but also in syncytiotrophoblasts of normal first-trimester placental villi; moreover, decidual staining of active YAP1 and CCN1 was found in both interstitial and endovascular extravillous trophoblasts. In cultured immortalized human trophoblastic HTR-8/SVneo cells, knockdown of YAP1 decreased CCN1 mRNA and protein expression and led to impaired cell invasion and migration. Also, CCN1 knockdown negatively affected HTR-8/SVneo cell invasion and migration but not viability. YAP1 knockdown was further found to impair HTR-8/SVneo cell viability via G0/G1 cell cycle arrest and apoptosis, while CCN1 knockdown had minimal effect on cell cycle arrest and no effect on apoptosis. Accordingly, treatment with recombinant CCN1 partially reversed the YAP1 knockdown-induced impairment in trophoblast invasion and migration but not in viability. Thus, CCN1 mediates the effects of YAP1 on human trophoblast invasion and migration but not apoptosis, and decreased placental expression of YAP1 and CCN1 in pregnancies complicated by early-onset sPE might contribute to the pathogenesis of this disease.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信