{"title":"Change in Vancomycin Absorption after Intraperitoneal Injection and Correlation between Intraperitoneal Vancomycin Absorption and Peritoneal Equilibration Test Score in Mice with Peritoneal Injuries.","authors":"Akihiro Moritsuka, Hirotaka Miyamoto, Yukina Takahashi, Haruna Hirata, Yuki Kawauchi, Shintaro Fumoto, Koyo Nishida","doi":"10.1248/bpb.b24-00687","DOIUrl":"https://doi.org/10.1248/bpb.b24-00687","url":null,"abstract":"<p><p>Peritonitis is a serious complication in peritoneal dialysis patients and requires antibiotic administration. Intraperitoneal vancomycin is an empiric therapy for peritonitis caused by Gram-positive cocci; however, there is no way to predict vancomycin absorption after intraperitoneal administration. Therefore, we aimed to evaluate the changes in vancomycin absorption after intraperitoneal injection into mice with chlorhexidine gluconate (CG) induced peritoneal injuries. Additionally, we examined the correlation between intraperitoneal vancomycin absorption and peritoneal equilibration test (PET) score. PET score was determined using glucose concentration in the peritoneal dialysis fluid at each dwell time (D<sub>t</sub>) and D<sub>2</sub> (2 h of dwell time)/D<sub>0</sub> (0 h of dwell time) glucose ratio. Vancomycin was injected into the peritoneal cavity of mice, blood was collected after 1-8 h, and peritoneal fluid was recovered. The residual ratio of intraperitoneal vancomycin was significantly decreased in the CG group at all time points compared to that in the vehicle group. CG group significantly exhibited higher serum vancomycin concentrations than the vehicle group, and the maximum serum concentration increased depending on CG concentration, with 0.05 and 0.1% CG groups showing 3.9- and 6.1-times higher vancomycin concentrations, respectively, than the vehicle group. A significant correlation was observed between the D<sub>t</sub>/D<sub>0</sub> glucose ratios and residual vancomycin ratios in the peritoneal fluid 2 or 6 h after intraperitoneal injection. A good correlation was observed between the D<sub>2</sub>/D<sub>0</sub> glucose and residual vancomycin ratios 6 h after intraperitoneal vancomycin injection. Thus, PET score can predict residual intraperitoneal vancomycin, aiding in dosing decisions.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 1","pages":"80-85"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Longitudinal Trend in Antimicrobial Susceptibility among Haemophilus influenzae: A Single-Centre Study in Japan.","authors":"Takeaki Wajima, Naoki Hara, Emi Tanaka, Atsuko Shirai, Kei-Ichi Uchiya","doi":"10.1248/bpb.b24-00715","DOIUrl":"https://doi.org/10.1248/bpb.b24-00715","url":null,"abstract":"<p><p>Haemophilus influenzae presents significant concerns regarding antimicrobial resistance. The circumstances surrounding H. influenzae have been changing owing to changes in antimicrobial usage. In the present study, to determine the current situation of H. influenzae, the antimicrobial susceptibility trends were investigated. In total, 21 clinical isolates were analyzed. Antimicrobial susceptibility measured using the broth dilution method was compared with that reported in previous studies at the same hospital. Quinolone low-susceptible isolates were further characterized by multi-locus sequence typing. Upon comparing the susceptibility data in 2022 with those in the past 15 years, the number of β-lactamase nonproducing ampicillin-resistant isolates was decreased. Regarding recent changes, β-lactam-susceptible isolates were found to have gradually increased every year. However, β-lactamase-producing isolates did not decrease. In particular, the ratio of β-lactamase-producing amoxicillin and clavulanic acid-resistant isolates in 2022 was the highest among all the years studied. Moreover, quinolone low-susceptible isolates were still present, suggesting that these isolates could have been indigenized in the community. Furthermore, a β-lactamase-producing amoxicillin and clavulanic acid-resistant isolate was found to have emerged among the quinolone low-susceptibility isolates. At first glance, these findings indicate that antimicrobial resistance has decreased among H. influenzae in clinical settings. However, β-lactamase-producing isolates and quinolone low-susceptible isolates have remained at a constant rate in the community.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 1","pages":"60-64"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pharmacological Profile of NCP-322, a Novel G Protein-Coupled Receptor 119 Agonist, as an Orally Active Therapeutic Agent for Type 2 Diabetes Mellitus.","authors":"Hideki Nakamura, Tsuyoshi Endo, Makoto Tsuda","doi":"10.1248/bpb.b24-00737","DOIUrl":"https://doi.org/10.1248/bpb.b24-00737","url":null,"abstract":"<p><p>Pharmacological activation of G protein-coupled receptor 119 (GPR119) produces pleiotropic beneficial effects, including the promotion of insulin secretion from pancreatic β-cells, enhancement of glucagon-like peptide (GLP)-1 secretion from intestinal L cells, glucose-dependent insulin secretion, and food intake and body weight gain suppression. Thus, GPR119 has attracted attention as a promising new target for type 2 diabetes mellitus (T2DM) treatment. Here, we identified a new small GPR119 agonist, NCP-322. This compound showed potent enhancing effects on insulin and GLP-1 secretion, which played a role in pancreatic β-cells and intestinal L cells. In the oral glucose tolerance test, NCP-322 administration reduced glycemic excursions that were only exhibited during hyperglycemia. Furthermore, NCP-322 administration did not induce hypoglycemia, the main side effect of antidiabetic drugs. These results suggest the promising therapeutic potential of NCP-322 for T2DM treatment.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 1","pages":"65-74"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preventive Effects of Psoraleae Semen Extracts on Cognitive Dysfunction in Alzheimer's Disease Model App<sup>NL-P-F</sup> Mice.","authors":"Genki Hiramatsu, Reina Mizutani, Kazufumi Toume, Yosuke Inada, Masahito Sawahata, Daisuke Uta, Katsuko Komatsu, Toshiaki Kume","doi":"10.1248/bpb.b24-00773","DOIUrl":"https://doi.org/10.1248/bpb.b24-00773","url":null,"abstract":"<p><p>Oxidative stress and neuroinflammation accompanied by microglial activation are increased in Alzheimer's disease (AD) and contribute to the pathogenesis of AD. Nuclear factor erythroid-derived 2-related factor 2 (Nrf2) is a master transcription factor that acts as an endogenous defense mechanism against oxidative stress and inflammation and is a potential target for preventing AD. Psoraleae Semen (PS) reportedly has antioxidant and anti-inflammatory effects. This study aimed to examine the effects of PS extract (PSE) on Nrf2 activation and prevention of cognitive dysfunction in App<sup>NL-P-F</sup> AD model mice. The effects of PSE on antioxidant response element (ARE) activity and cytoprotection in PC12 cells and on microglial activation in BV-2 cells were evaluated. PSE showed high ARE activity and prevented 6-hydroxydopamine-induced cytotoxicity in PC12 cells. Moreover, PSE suppressed lipopolysaccharide-induced nitric oxide production in BV-2 cells. Oral administration of PSE prevented cognitive dysfunction in App<sup>NL-P-F</sup> mice without affecting motor function. Our results support that PSE can contribute to the development of new preventive and therapeutic agents for AD focusing on Nrf2 activation.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 1","pages":"75-79"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of Eye Contact on Communication during Online Medication Counseling: An Analysis Using the Roter Interaction Analysis System.","authors":"Ayako Mori, Izumi Kato, Katsuya Narumi, Yoh Takekuma, Shuhei Ishikawa, Hitoshi Kashiwagi, Yuki Sato, Mitsuru Sugawara, Masaki Kobayashi","doi":"10.1248/bpb.b24-00489","DOIUrl":"https://doi.org/10.1248/bpb.b24-00489","url":null,"abstract":"<p><p>We have previously used the Roter Interaction Analysis System (RIAS) to analyze differences between online and face-to-face medication counseling. In our previous research, students have commented that the built-in camera on their laptops makes it difficult to make eye contact and communicate effectively. Furthermore, there is a lack of research on the impact of eye contact in online medical communication. Therefore, this study aimed to investigate the effects of eye contact on online medication counseling. Two simulated patients (SPs) and 10 pharmacy students acting as pharmacists were enrolled in this clinical study (ID:2022-001). Participants were divided into 2 groups: one using cameras designed to naturally align eye contact and another using standard device cameras. The dialogues were segmented into meaningful minimal units (utterances), categorized using RIAS according to their nature, and analyzed. Scenarios with aligned eye contact significantly increased the total number of SP utterances and the occurrence and proportion of \"Check\" utterances by students, confirming their understanding. The increase in the total utterance count of SPs was associated with a corresponding increase in the number of \"Agree\" utterances indicating agreement and understanding. Thus, eye contact enhances the clarity of patient responses and proactively confirms patient understanding, thereby mitigating the difficulty of assessing comprehension and conducting bidirectional communication online. This study's findings quantitatively suggested that eye contact in online medication counseling enhances proactive engagement in communication for pharmacy students and SPs.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 1","pages":"17-22"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Underlying Mechanism for the Altered Hypoglycemic Effects of Nateglinide in Rats with Acute Peripheral Inflammation.","authors":"Haruka Toko, Manami Ogino, Akane Nishiwaki, Moeko Kojina, Tetsuya Aiba","doi":"10.1248/bpb.b24-00582","DOIUrl":"https://doi.org/10.1248/bpb.b24-00582","url":null,"abstract":"<p><p>The hypoglycemic effects of nateglinide (NTG) were examined in rats with acute peripheral inflammation (API) induced by carrageenan treatment, and the mechanisms accounting for altered hypoglycemic effects were investigated. NTG was administered through the femoral vein in control and API rats, and its plasma concentration profile was characterized. The time courses of the changes in plasma glucose and insulin levels were also examined. Although the plasma concentration profile of NTG in API rats was marginally distinguishable from that in control rats, the hypoglycemic effect of NTG was more persistent in API rats than in control rats. In addition, NTG elevated the plasma level of insulin more intensely in API rats than in control rats. Then, the islets of Langerhans were procured by perfusing the pancreas with collagenase solution in control and API rats, and the pancreatic mRNA expression of preproinsulin (Ins1), as well as that of sulfonylurea receptor ABCC8 (Abcc8), were examined. As a result, the expression of preproinsulin and ABCC8 mRNA increased in API rats. These findings suggest that the hypoglycemic effect of NTG was potentiated in API rats due to increased insulin secretion in the pancreas, which was caused by enhanced preproinsulin synthesis and expression of the sulfonylurea receptor.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 1","pages":"51-59"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A 3D Cell-Culture System That Uses Nano-Fibrillated Bacterial Cellulose to Prepare a Spherical Formulation of Culture Cells.","authors":"Shunsuke Akagi, Hidenori Ando, Cristina Nana Amorim Matsuo, Kenji Tajima, Haruka Takata, Tokuo Matsushima, Takatomo Kusano, Tatsuhiro Ishida","doi":"10.1248/bpb.b24-00804","DOIUrl":"https://doi.org/10.1248/bpb.b24-00804","url":null,"abstract":"<p><p>A 3-dimensional (3D) cell culture is now being actively pursued to accomplish the in vivo-like cellular morphology and biological functions in cell culture. We recently obtained nano-fibrillated bacterial cellulose (NFBC). In this study, we developed a novel NFBC-based 3D cell-culture system, the OnGel method, and the Suspension method. HepG2 human liver cancer cells were cultured via these methods and formed spherical formulations in the optimized condition, 1.0% (w/v) of NFBC in the OnGel method, and 0.06-0.10% (w/v) of NFBC in the Suspension method. Non-cancerous cells such as human-induced pluripotent stem (iPS) cells and human mesenchymal stem cells (MSCs) also formed spherical formulations. It is noteworthy that both the size and cell viability of spheroids prepared via these methods were comparable to those cultured using commercially available 3D cell-culture systems. Both OnGel and Suspension methods are less complicated than the existing 3D cell-culture systems, which is an invaluable advantage for the preparation of cancer spheroids. The NFBC-based 3D cell-culture systems introduced here show great promise as a tool to prepare cultures for cell-derived spheroids for the progress of both in vitro and in vivo studies of the biological functioning of cells.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 1","pages":"23-32"},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Epigallocatechin-3-gallate Alleviates Ethanol-Induced Endothelia Cells Injury Partly through Alteration of NF-κB Translocation and Activation of the Nrf2 Signaling Pathway.","authors":"Jie Xu, Shouzhu Xu, Jiayin Luo, Shihao Zhang, Dongdong Wu, Qifan Yang, Rourou Fang, Chuandao Shi, Qiling Liu, Jing Zhao","doi":"10.1248/bpb.b23-00773","DOIUrl":"10.1248/bpb.b23-00773","url":null,"abstract":"<p><p>Ethanol (alcohol) is a risk factor that contributes to non-communicable diseases. Chronic abuse of ethanol is toxic to both the heart and overall health, and even results in death. Ethanol and its byproduct acetaldehyde can harm the cardiovascular system by impairing mitochondrial function, causing oxidative damage, and reducing contractile proteins. Endothelial cells are essential components of the cardiovascular system, are highly susceptible to ethanol, either through direct or indirect exposure. Thus, protection against endothelial injury is of great importance for persons who chronic abuse of ethanol. In this study, an in vitro model of endothelial injury was created using ethanol. The findings revealed that a concentration of 20.0 mM of ethanol reduced cell viability and Bcl-2 expression, while increasing cell apoptosis, intracellular reactive oxygen species (ROS) levels, mitochondrial depolarization, and the expression of Bax and cleaved-caspase-3 in endothelial cells. Further study showed that ethanol promoted nuclear translocation of nuclear factor kappa B (NF-κB), increased the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 in the culture medium, and inhibited nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway. The aforementioned findings suggest that ethanol has a harmful impact on endothelial cells. Nevertheless, the application of epigallocatechin-3-gallate (EGCG) to the cells can effectively mitigate the detrimental effects of ethanol on endothelial cells. In conclusion, EGCG alleviates ethanol-induced endothelial injury partly through alteration of NF-κB translocation and activation of the Nrf2 signaling pathway. Therefore, EGCG holds great potential in safeguarding individuals who chronically abuse ethanol from endothelial dysfunction.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":" ","pages":"1248-1254"},"PeriodicalIF":1.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Chronic Ethanol Consumption on Exogenous Glucose Metabolism in Rats Using [1-<sup>13</sup>C], [2-<sup>13</sup>C], and [3-<sup>13</sup>C]glucose Breath Tests.","authors":"Naoyasu Kashima, Yosuke Sasaki, Naoyuki Kawagoe, Tomoyuki Shigeta, Fumiya Komatsu, Yoshihisa Urita","doi":"10.1248/bpb.b23-00403","DOIUrl":"10.1248/bpb.b23-00403","url":null,"abstract":"<p><p>The C3 carbon of glucose molecules becomes the C1 carbon of pyruvate molecules during glycolysis, and the C1 and C2 carbons of glucose molecules are metabolized in the tricarboxylic acid (TCA) cycle. Utilizing this position-dependent metabolism of C atoms in glucose molecules, [1-<sup>13</sup>C], [2-<sup>13</sup>C], and [3-<sup>13</sup>C]glucose breath tests are used to evaluate glucose metabolism. However, the effects of chronic ethanol consumption remain incompletely understood. Therefore, we evaluated glucose metabolism in ethanol-fed rats using [1-<sup>13</sup>C], [2-<sup>13</sup>C], and [3-<sup>13</sup>C]glucose breath tests. Ethanol-fed (ERs) and control rats (CRs) (n = 8 each) were used in this study, and ERs were prepared by replacing drinking water with a 16% ethanol solution. We administered 100 mg/kg of [1-<sup>13</sup>C], [2-<sup>13</sup>C], or [3-<sup>13</sup>C]glucose to rats and collected expired air (at 10-min intervals for 180 min). We compared the <sup>13</sup>CO<sub>2</sub> levels (Δ<sup>13</sup>CO<sub>2</sub>, ‰) of breath measured by IR isotope ratio spectrometry and area under the curve (AUC) values of the <sup>13</sup>CO<sub>2</sub> levels-time curve between ERs and CRs. <sup>13</sup>CO<sub>2</sub> levels and AUCs after administration of [1-<sup>13</sup>C]glucose and [2-<sup>13</sup>C]glucose were lower in ERs than in CRs. Conversely, the AUC for the [3-<sup>13</sup>C]glucose breath test showed no significant differences between ERs and CRs, although <sup>13</sup>CO<sub>2</sub> levels during the 110-120 min interval were significantly high in ERs. These findings indicate that chronic ethanol consumption diminishes glucose oxidation without concomitantly reducing glycolysis. Our study demonstrates the utility of <sup>13</sup>C-labeled glucose breath tests as noninvasive and repeatable methods for evaluating glucose metabolism in various subjects, including those with alcoholism or diabetes.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":" ","pages":"856-860"},"PeriodicalIF":2.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140304768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protective Effect of Pemafibrate Treatment against Diabetic Retinopathy in Spontaneously Diabetic Torii Fatty Rats.","authors":"Yoshiaki Tanaka, Rina Takagi, Shingen Mitou, Machiko Shimmura, Tetsuya Hasegawa, Jota Amarume, Masami Shinohara, Yasushi Kageyama, Tomohiko Sasase, Takeshi Ohta, Shin-Ichi Muramatsu, Akihiro Kakehashi, Toshikatsu Kaburaki","doi":"10.1248/bpb.b23-00872","DOIUrl":"10.1248/bpb.b23-00872","url":null,"abstract":"<p><p>Diabetic retinopathy (DR) can cause visual impairment and blindness, and the increasing global prevalence of diabetes underscores the need for effective therapies to prevent and treat DR. Therefore, this study aimed to evaluate the protective effect of pemafibrate treatment against DR, using a Spontaneously Diabetic Torii (SDT) fatty rat model of obese type 2 diabetes. SDT fatty rats were fed either a diet supplemented with pemafibrate (0.3 mg/kg/d) for 16 weeks, starting at 8 weeks of age (Pf SDT fatty: study group), or normal chow (SDT fatty: controls). Normal chow was provided to Sprague-Dawley (SD) rats (SD: normal controls). Electroretinography (ERG) was performed at 8 and 24 weeks of age to evaluate the retinal neural function. After sacrifice, retinal thickness, number of retinal folds, and choroidal thickness were evaluated, and immunostaining was performed for aquaporin-4 (AQP4). No significant differences were noted in food consumption, body weight, or blood glucose level after pemafibrate administration. Triglyceride levels were reduced, and high-density lipoprotein cholesterol levels were increased. Extension of oscillatory potential (OP)1 and OP3 waves on ERG was suppressed in the Pf SDT fatty group. Retinal thickness at 1500 microns from the optic disc improved in the Pf SDT fatty group. No significant improvements were noted in choroidal thickness or number of retinal folds. Quantitative analyses showed that AQP4-positive regions in the retinas were significantly larger in the Pf SDT fatty group than in the SDT fatty group. The findings suggest that pemafibrate treatment can exert protective effects against DR.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":" ","pages":"713-722"},"PeriodicalIF":2.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140020883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}