{"title":"Activated Fibroblast Growth Factor Receptor 1 Mitigated Poly-PR-Induced Oxidative Stress and Protein Translational Impairment.","authors":"Taisei Ito, Kazuki Ohuchi, Hisaka Kurita, Takanori Murakami, Shinnosuke Takizawa, Ayaka Fujimaki, Junya Murata, Yasuhisa Oida, Isao Hozumi, Kiyoyuki Kitaichi, Masatoshi Inden","doi":"10.1248/bpb.b24-00794","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective motor neuron cell death. A GGGGCC hexanucleotide repeat expansion (HRE) within the chromosome 9 open reading frame 72 (C9orf72) gene is a major causative factor in ALS. This abnormal HRE triggers five types of dipeptide repeat protein (DPR), each composed of two alternating amino acid expressions. Among the DPRs, arginine-rich Poly-PR localizes predominantly to the nucleus, exerting particularly strong toxicity on motor and cortical neurons. Several mechanisms have been proposed for poly-PR-induced neurotoxicity. In this study, poly-PR-expressing NSC34 motor neuron-like cells showed an increase in oxidative stress. Fibroblast growth factor receptor 1 (FGFR1) is known to promote neurogenesis and inhibit apoptosis in neurons. However, its neuroprotective effects against DPR-induced toxicity have not been previously reported. Here, we demonstrated that FGFR1 activation reduced oxidative stress by upregulating nuclear factor erythroid 2-related factor 2 (NRF2) expression. Furthermore, we propose that the increase in NRF2 through FGFR1 activation may result from the alleviation of protein translation impairment. Overall, these findings suggest that FGFR1 activation provides neuroprotection against poly-PR toxicity and may represent a potential therapeutic strategy for ALS.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 2","pages":"93-100"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b24-00794","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective motor neuron cell death. A GGGGCC hexanucleotide repeat expansion (HRE) within the chromosome 9 open reading frame 72 (C9orf72) gene is a major causative factor in ALS. This abnormal HRE triggers five types of dipeptide repeat protein (DPR), each composed of two alternating amino acid expressions. Among the DPRs, arginine-rich Poly-PR localizes predominantly to the nucleus, exerting particularly strong toxicity on motor and cortical neurons. Several mechanisms have been proposed for poly-PR-induced neurotoxicity. In this study, poly-PR-expressing NSC34 motor neuron-like cells showed an increase in oxidative stress. Fibroblast growth factor receptor 1 (FGFR1) is known to promote neurogenesis and inhibit apoptosis in neurons. However, its neuroprotective effects against DPR-induced toxicity have not been previously reported. Here, we demonstrated that FGFR1 activation reduced oxidative stress by upregulating nuclear factor erythroid 2-related factor 2 (NRF2) expression. Furthermore, we propose that the increase in NRF2 through FGFR1 activation may result from the alleviation of protein translation impairment. Overall, these findings suggest that FGFR1 activation provides neuroprotection against poly-PR toxicity and may represent a potential therapeutic strategy for ALS.
期刊介绍:
Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012.
The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.